Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the properties for stabilized polyacrylonitrile thermally treated in air

https://doi.org/10.26896/1028-6861-2021-87-7-30-37

Abstract

Developing of nanotechnology-based electronics entails developing of new carbon nanocrystalline materials with predetermined physicochemical properties, e.g., obtained by synthesis of polyacrylonitrile (PAN) in conditions of heat treatment. We have studied the properties of PAN heat-treated in air in the temperature range 150 – 250°C and the effect of stabilization on the kinetic parameters of synthesis and thermochemical properties of carbon material upon heat treatment in N2 atmosphere. It is shown that an increase in the temperature of a preliminary treatment up to 200°C leads to a decrease in the activation energy and pre-exponential factor compared to the corresponding values characteristic for the initial polymer (from 90.9 and 3.1 × 106 to 53.3 kJ/mol and 1.1 × 103 min–1, respectively), which indicates to the occurrence of diffusion limitations. When the temperature of a preliminary treatment in air increases from 180 to 250°C, the difference between temperature peaks for DSC and TGA curves decreases due to appearance of a «core-shell» structure. XRD data indicate that the initial PAN structure does not change up to 150°C. Further increase in the temperature leads to significant changes in the initial structure of the polymer which are manifested in a decrease in the peak area in the X-ray diffraction pattern of the polymer. The results obtained can be used in the development of a method for the synthesis of carbon materials with controlled properties predetermined at the stage of stabilization.

About the Authors

V. V. Kozlov
A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Russian Federation

Vladimir V. Kozlov

29, Leninsky pr., Moscow, 119991



A. A. Vasilev
A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences
Russian Federation

Andrey A. Vasilev

29, Leninsky pr., Moscow, 119991



I. G. Gorichev
Moscow Pedagogical State University
Russian Federation

Igor G. Gorichev

1, Malaya Pirogovskaya ul., Moscow, 119991



A. Т. Kalashnik
National University of Science and Technology
Russian Federation

Anatoliy T. Kalashnik

4, Leninsky prosp., Moscow, 119991



V. G. Kostishin
National University of Science and Technology
Russian Federation

Vladimir G. Kostishin

4, Leninsky prosp., Moscow, 119991



F. S. Tabarov
National University of Science and Technology
Russian Federation

Farruh S. Tabarov

4, Leninsky prosp., Moscow, 119991



В. S. Godaev
National University of Science and Technology
Russian Federation

Bain S. Godaev

4, Leninsky prosp., Moscow, 119991



М. A. Sitnov
National University of Science and Technology
Russian Federation

Mihail A. Sitnov

4, Leninsky prosp., Moscow, 119991



References

1. Morris E. A., Weisenberger M. C., Abdallah M. G., Vautard F. S., et al. High performance carbon fibers from very high molecular weight polyacrylonitrile precursors / Carbon. 2016. Vol. 101. P. 245 – 252. DOI: 10.1016/j.carbon.2016.01.104

2. Kazaryan S. A., Starodubtsev N. F. Study of the optical and luminescent properties of carbon nanoparticles using the microphotoluminescence method / Persp. Mater. 2019. N 8. P. 5 – 21. DOI: 10.30791/1028-978X-2019-8-5-21 [in Russian].

3. Fu Z., Gui Y., Cao C., Liu B., et al. Structure evolution and mechanism of polyacrylonitrile and related copolymers during the stabilization / J. Mater. Sci. 2014. Vol. 49. P. 2864 – 2874. DOI: 10.1007/s10853-013-7992-3

4. Zemtsov L. M., Karpacheva G. P. Chemical transformations of polyacrylonitrile under IR radiation / Vysokomolek. Soed. A. 1994. Vol. 36. N 6. P. 919 – 924 [in Russian].

5. Ghorpade R. V., Cho D. W., Hong S. C. Effect of controlled tacticity of polyacrylonitrile (co)polymers on their thermal oxidative stabilization behaviors and the properties of resulting carbon films / Carbon. 2017. Vol. 121. P. 502 – 511. DOI: 10. 1016/j.carbon.2017.06.015

6. Zhao R., Sun P., Liu R., Ding Z. Influence of heating procedures on the surface structure of stabilized polyacrylonitrile fibers / Appl. Surface Sci. 2018. Vol. 433. P. 321 – 328. DOI: 10.1016/j.apsusc.2017.09.252

7. Sha Y., Liu W., Lil Y., Cao W. Formation Mechanism of Skin–Core Chemical Structure within Stabilized Polyacrylonitrile Monofilaments / Nanoscale Research Letters. 2019. Vol. 14. P. 1 – 7. DOI: 10.1186/s11671-019-2926-x

8. Rahaman M., Ismail A., Mustafa A. A review of heat treatment on polyacrylonitrile fiber / Polym. Degrad. Stab. 2007. Vol. 92. Issue 8. P. 1421 – 1432. DOI: 10.1016/j.polymdegradstab.2007.03.023

9. Szepcsika B., Pukanszkya B. The mechanism of thermal stabilization of polyacrylonitrile / Thermochim. Acta. 2019. Vol. 671. P. 200 – 208. DOI: 10.1016/j.polymdegradstab.2007.03.023

10. Shulga Yu. M., Rubtsov V. I., Efimov O. N., Karpacheva G. P., et al. Studying pyrolyzed polyacrylonitrile films by X-ray photon spectroscopy, Auger spectroscopy and electron energy loss spectroscopy / Vysokomolek. Soed. A. 1996. Vol. 38. N 6. P. 989 – 992 [in Russian].

11. Su C., Gao A., Luo S., Xu L. The effect of heat treatment on the electrical conductivity of highly conducting graphene films / Carbon. 2013. Vol. 51. P. 436. DOI: 10.1016/j.carbon.2012.08.034

12. Nunna S., Naebe M., Hameed N., Creighton C., Naghashian S., Jennings M., Atkiss S., Setty M., Fox B. Investigation of progress of reactions and evolution of radial heterogeneity in the initial stage of thermal stabilization of PAN precursor fibres / Polym. Degrad. Stab. 2016. Vol. 125. P. 105 – 114. DOI: 10.1016/j.polymdegradstab.2016.01.008

13. Selivanov V. N., Smyslov E. F. X-ray analysis of distributing spherical crystals / Kristallografiya. 1993. Vol. 38. N 3. P. 174 – 180 [in Russian].

14. Kozlov V. V., Gorichev I. G., Petrov V. S., Lainer Yu. A. Simulation of kinetics for processes in synthesizing nanocomposite Cu/C / Khim. Tekhnol. 2008. N 11. P. 556 – 559 [in Russian].

15. Delmon B. Kinetics of heterogeneous reactions. — Moscow: Mir, 1972. — 556 p. [Russian translation].

16. Braun M., Dollimor D., Galvei A. Reactions of solids. — Moscow: Mir, 1983. — 360 p. [Russian translation].

17. Rozovsky A. Ya. Heterogeneous chemical reactions. — Moscow: Nauka. 1980. — 323 p. [in Russian].

18. Kozlov V. V., Korolev Yu. M., Karpacheva G. P. Structure transformations of composites based on polyacrylonitrile and fullerene C60 under IR radiation / Vysokomolek. Soed. A. 1999. Vol. 41. N 5. P. 836 – 840 [in Russian].

19. Grynova G., Hodgson J., Coote M. Revising the mechanism of polymer autooxidation / Org. Biomol. Chem. 2011. Vol. 9. P. 480 – 490. DOI: 10.1039/C0OB00596G

20. Nunna S., Creighton C., Hameed N., Naebe M., Henderson L. Radial structure and property relationship in the thermal stabilization of PAN precursor fibres / Polymer Testing. 2017. Vol. 59. P. 203 – 211. DOI: 10.1016/j.polymertesting.2017.02.006

21. Kalashnik A. T., Smirnova T. N., Chernova O. P., Kozlov V. V. Properties and structure of polyacrylonitrile fibres / Vysokomolek. Soed. A. 2010. Vol. 52. N 11. P. 2038 – 2043 [in Russian].


Review

For citations:


Kozlov V.V., Vasilev A.A., Gorichev I.G., Kalashnik A.Т., Kostishin V.G., Tabarov F.S., Godaev В.S., Sitnov М.A. Study of the properties for stabilized polyacrylonitrile thermally treated in air. Industrial laboratory. Diagnostics of materials. 2021;87(7):30-37. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-7-30-37

Views: 537


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)