

Study of the properties for stabilized polyacrylonitrile thermally treated in air
https://doi.org/10.26896/1028-6861-2021-87-7-30-37
Abstract
Developing of nanotechnology-based electronics entails developing of new carbon nanocrystalline materials with predetermined physicochemical properties, e.g., obtained by synthesis of polyacrylonitrile (PAN) in conditions of heat treatment. We have studied the properties of PAN heat-treated in air in the temperature range 150 – 250°C and the effect of stabilization on the kinetic parameters of synthesis and thermochemical properties of carbon material upon heat treatment in N2 atmosphere. It is shown that an increase in the temperature of a preliminary treatment up to 200°C leads to a decrease in the activation energy and pre-exponential factor compared to the corresponding values characteristic for the initial polymer (from 90.9 and 3.1 × 106 to 53.3 kJ/mol and 1.1 × 103 min–1, respectively), which indicates to the occurrence of diffusion limitations. When the temperature of a preliminary treatment in air increases from 180 to 250°C, the difference between temperature peaks for DSC and TGA curves decreases due to appearance of a «core-shell» structure. XRD data indicate that the initial PAN structure does not change up to 150°C. Further increase in the temperature leads to significant changes in the initial structure of the polymer which are manifested in a decrease in the peak area in the X-ray diffraction pattern of the polymer. The results obtained can be used in the development of a method for the synthesis of carbon materials with controlled properties predetermined at the stage of stabilization.
About the Authors
V. V. KozlovRussian Federation
Vladimir V. Kozlov
29, Leninsky pr., Moscow, 119991
A. A. Vasilev
Russian Federation
Andrey A. Vasilev
29, Leninsky pr., Moscow, 119991
I. G. Gorichev
Russian Federation
Igor G. Gorichev
1, Malaya Pirogovskaya ul., Moscow, 119991
A. Т. Kalashnik
Russian Federation
Anatoliy T. Kalashnik
4, Leninsky prosp., Moscow, 119991
V. G. Kostishin
Russian Federation
Vladimir G. Kostishin
4, Leninsky prosp., Moscow, 119991
F. S. Tabarov
Russian Federation
Farruh S. Tabarov
4, Leninsky prosp., Moscow, 119991
В. S. Godaev
Russian Federation
Bain S. Godaev
4, Leninsky prosp., Moscow, 119991
М. A. Sitnov
Russian Federation
Mihail A. Sitnov
4, Leninsky prosp., Moscow, 119991
References
1. Morris E. A., Weisenberger M. C., Abdallah M. G., Vautard F. S., et al. High performance carbon fibers from very high molecular weight polyacrylonitrile precursors / Carbon. 2016. Vol. 101. P. 245 – 252. DOI: 10.1016/j.carbon.2016.01.104
2. Kazaryan S. A., Starodubtsev N. F. Study of the optical and luminescent properties of carbon nanoparticles using the microphotoluminescence method / Persp. Mater. 2019. N 8. P. 5 – 21. DOI: 10.30791/1028-978X-2019-8-5-21 [in Russian].
3. Fu Z., Gui Y., Cao C., Liu B., et al. Structure evolution and mechanism of polyacrylonitrile and related copolymers during the stabilization / J. Mater. Sci. 2014. Vol. 49. P. 2864 – 2874. DOI: 10.1007/s10853-013-7992-3
4. Zemtsov L. M., Karpacheva G. P. Chemical transformations of polyacrylonitrile under IR radiation / Vysokomolek. Soed. A. 1994. Vol. 36. N 6. P. 919 – 924 [in Russian].
5. Ghorpade R. V., Cho D. W., Hong S. C. Effect of controlled tacticity of polyacrylonitrile (co)polymers on their thermal oxidative stabilization behaviors and the properties of resulting carbon films / Carbon. 2017. Vol. 121. P. 502 – 511. DOI: 10. 1016/j.carbon.2017.06.015
6. Zhao R., Sun P., Liu R., Ding Z. Influence of heating procedures on the surface structure of stabilized polyacrylonitrile fibers / Appl. Surface Sci. 2018. Vol. 433. P. 321 – 328. DOI: 10.1016/j.apsusc.2017.09.252
7. Sha Y., Liu W., Lil Y., Cao W. Formation Mechanism of Skin–Core Chemical Structure within Stabilized Polyacrylonitrile Monofilaments / Nanoscale Research Letters. 2019. Vol. 14. P. 1 – 7. DOI: 10.1186/s11671-019-2926-x
8. Rahaman M., Ismail A., Mustafa A. A review of heat treatment on polyacrylonitrile fiber / Polym. Degrad. Stab. 2007. Vol. 92. Issue 8. P. 1421 – 1432. DOI: 10.1016/j.polymdegradstab.2007.03.023
9. Szepcsika B., Pukanszkya B. The mechanism of thermal stabilization of polyacrylonitrile / Thermochim. Acta. 2019. Vol. 671. P. 200 – 208. DOI: 10.1016/j.polymdegradstab.2007.03.023
10. Shulga Yu. M., Rubtsov V. I., Efimov O. N., Karpacheva G. P., et al. Studying pyrolyzed polyacrylonitrile films by X-ray photon spectroscopy, Auger spectroscopy and electron energy loss spectroscopy / Vysokomolek. Soed. A. 1996. Vol. 38. N 6. P. 989 – 992 [in Russian].
11. Su C., Gao A., Luo S., Xu L. The effect of heat treatment on the electrical conductivity of highly conducting graphene films / Carbon. 2013. Vol. 51. P. 436. DOI: 10.1016/j.carbon.2012.08.034
12. Nunna S., Naebe M., Hameed N., Creighton C., Naghashian S., Jennings M., Atkiss S., Setty M., Fox B. Investigation of progress of reactions and evolution of radial heterogeneity in the initial stage of thermal stabilization of PAN precursor fibres / Polym. Degrad. Stab. 2016. Vol. 125. P. 105 – 114. DOI: 10.1016/j.polymdegradstab.2016.01.008
13. Selivanov V. N., Smyslov E. F. X-ray analysis of distributing spherical crystals / Kristallografiya. 1993. Vol. 38. N 3. P. 174 – 180 [in Russian].
14. Kozlov V. V., Gorichev I. G., Petrov V. S., Lainer Yu. A. Simulation of kinetics for processes in synthesizing nanocomposite Cu/C / Khim. Tekhnol. 2008. N 11. P. 556 – 559 [in Russian].
15. Delmon B. Kinetics of heterogeneous reactions. — Moscow: Mir, 1972. — 556 p. [Russian translation].
16. Braun M., Dollimor D., Galvei A. Reactions of solids. — Moscow: Mir, 1983. — 360 p. [Russian translation].
17. Rozovsky A. Ya. Heterogeneous chemical reactions. — Moscow: Nauka. 1980. — 323 p. [in Russian].
18. Kozlov V. V., Korolev Yu. M., Karpacheva G. P. Structure transformations of composites based on polyacrylonitrile and fullerene C60 under IR radiation / Vysokomolek. Soed. A. 1999. Vol. 41. N 5. P. 836 – 840 [in Russian].
19. Grynova G., Hodgson J., Coote M. Revising the mechanism of polymer autooxidation / Org. Biomol. Chem. 2011. Vol. 9. P. 480 – 490. DOI: 10.1039/C0OB00596G
20. Nunna S., Creighton C., Hameed N., Naebe M., Henderson L. Radial structure and property relationship in the thermal stabilization of PAN precursor fibres / Polymer Testing. 2017. Vol. 59. P. 203 – 211. DOI: 10.1016/j.polymertesting.2017.02.006
21. Kalashnik A. T., Smirnova T. N., Chernova O. P., Kozlov V. V. Properties and structure of polyacrylonitrile fibres / Vysokomolek. Soed. A. 2010. Vol. 52. N 11. P. 2038 – 2043 [in Russian].
Review
For citations:
Kozlov V.V., Vasilev A.A., Gorichev I.G., Kalashnik A.Т., Kostishin V.G., Tabarov F.S., Godaev В.S., Sitnov М.A. Study of the properties for stabilized polyacrylonitrile thermally treated in air. Industrial laboratory. Diagnostics of materials. 2021;87(7):30-37. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-7-30-37