

Rapid X-ray fluorescence analysis of intercalation compounds for molybdenum and cobalt content
https://doi.org/10.26896/1028-6861-2021-87-8-12-18
Abstract
Synthesizing and studying the properties of nanomaterials based on layered molybdenum disulfide, often face a need for rapid elemental analysis and prompt return of the material to the customer. Sometimes, nanoparticles of molybdenum disulfide are to be modified with metal compounds to improve the catalytic or magnetic properties of the material. We propose a method for rapid X-ray fluorescence determination of molybdenum and cobalt in the range of 10 – 50% in such compounds using a bulk method without dilution. Analytical signals were measured at the wavelengths of MoKα and CoKα lines using a VRA-30 spectrometer (Carl Zeiss, Germany; X-ray tube with Rh anode). The metal content was calculated using the derived coupling equations. The determination error ranges within ±2.7% (abs.) and 1.4% (abs.) for Mo and Co, respectively. Correctness of the method was confirmed for a batch of synthesized compounds by comparison of the results obtained with the data of XRF analysis using the dilution method traditionally used in the laboratory. The proposed rapid method provides simplification of the procedure and more than 4-fold shortening of analysis in time, the sample being preserved and can be used for further research.
About the Authors
V. N. TalanovaRussian Federation
Valeria N. Talanova
28, Vavilova ul., Moscow, 119991, Russia
O. L. Lependina
Russian Federation
Olga L. Lependina
28, Vavilova ul., Moscow, 119991, Russia
D. Kh. Kitaeva
Russian Federation
Dinara Kh. Kitaeva
28, Vavilova ul., Moscow, 119991, Russia
N. M. Kabaeva
Russian Federation
Nina M. Kabaeva
28, Vavilova ul., Moscow, 119991, Russia
R. U. Takazova
Russian Federation
Rina U. Takazova
28, Vavilova ul., Moscow, 119991, Russia
A. G. Buyanovskaya
Russian Federation
Anastasiya G. Buyanovskaya
28, Vavilova ul., Moscow, 119991, Russia
References
1. Goloveshkin A. S., Lenenko N. D., Naumkin A. V., et al. Enhancement of 1T-MoS2 Superambient Temperature Stability and Hydrogen Evolution Performance by Intercalating a Phenanthroline Monolayer / ChemNanoMat. 2021. Vol. 7. N 4. P. 447 – 456. DOI: 10.1002/cnma.202000586
2. Ushakov I. E., Goloveshkin A. S., Lenenko N. D., et al. Structure and Noncovalent Interactions of Molybdenum Disulfide Monolayers in the Layered Organo-inorganic Compound with Tetramethylguanidine. / 2020. Vol. 46. N 11. P. 779 – 785. DOI: 10.1134/S1070328420090067
3. Ushakov I. E., Goloveshkin A. S., Lenenko N. D., et al. Hydrogen bond-driven self-assembly between single-layer MoS2 and alkyldiamine molecules / Cryst. Growth Des. 2018. Vol. 18. P. 5116 – 5123. DOI: 10.1021/acs.cgd.8b00551
4. Golub A. S., Lenenko N. D., Zaikovskii V. I., et al. Modifying magnetic properties and dispersity of few-layer MoS2 particles by 3d metal carboxylate complexes / Mater. Chem. Phys. 2016. Vol. 183. P. 457 – 466. DOI: 10.1016/j.matchemphys.2016.09.001
5. Kabachii Yu. A., Golub A. S., Kochev S. Yu., et al. Multifunctional Nanohybrids by Self-Assembly of Monodisperse Iron Oxide Nanoparticles and Nanolamellar MoS2 Plates / Chem. Mater. 2013. Vol. 25. N 12. P. 2434 – 2440. DOI: 10.1021/cm400363n
6. Blokhin M. A. X-ray physics. — Moscow: Gostekhizdat, 1957. — 518 p. [in Russian].
7. Losev N. F. Quantitative X-ray spectral fluorescence analysis. — Moscow: Nauka. Physmatlit, 1969. — 336 p. [in Russian].
8. Losev N. F., Smagunova A. N. Fundamentals of X-ray spectral fluorescence analysis. — Moscow: Khimia, 1982. — 207 p. [in Russian].
9. Bakhtiyarov A. V., Savel’ev S. K. X-ray fluorescence analysis of mineral raw materials. — St. Petersburg: Izd. SPb. Univ., 2014. — 132 p. [in Russian].
10. Suvorova D. S., Khudonogova E. V., Revenko A. G. X-ray fluorescence determination of Cs, Ba, La, Ce, Nd, and Ta concentrations in rocks of various composition / X-Ray Spectrom. 2017. Vol. 46. N 3. P. 200 – 208. DOI: 10.1002/xrs.2747
11. Chubarov V. M., Amosova A. A., Finkelshtein A. L. X-ray fluorescence determination of ore elements in ferromanganese formations. / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 12. P. 5 – 13 [in Russian]. DOI: 10.26896/1028-6861-2019-85-12-5-13
12. Drozdov A. A., Andreev M. N., Bychkov E. D., Ratnikov D. S. Determination of the elemental composition of historical glasses using a portable X-ray fluorescence analyzer / Zavod. Lab. Diagn. Mater. 2020. Vol. 86. N 11. P. 13 – 19 [in Russian]. DOI: 10.26896/1028-6861-2020-86-11-13-19
13. Danilov D. V., Sharanov P. Y., Alov N. V. Determination of the elemental composition of dietary supplements by total reflection X-ray fluorescence spectrometry / J. Anal. Chem. 2020. Vol. 75. N 6. P. 764 – 768. DOI: 10.1134/S1061934820060040
14. Sharanov P. Y., Alov N. V. Total Reflection X-Ray Fluorescence Analysis of Solid Metallurgical Samples / J. Anal. Chem. 2018. Vol. 73. N 11. P. 1085 – 1092. DOI: 10.1134/S0044450218110129
15. Krotova A. A., Prikhodko K. Ya., Vladimirova S. A., Filatova D. G. Determination of nickel, zinc and cobalt in advanced materials based on NixCO3–xO4 and ZnxCO3–xO4 by inductively coupled plasma mass spectrometry (ICP-MS) and X-ray fluorescence / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 1. Part. 1. P. 10 – 13 [in Russian]. DOI: 10.26896/1028-6861-2018-84-1-I-10-13
16. Malkov A. V., Kozhevnikov A. Y., Kosyakov D. S., Kosheleva A. E. Determination of Ni, Co, and Cu in seawater by total external reflection X-ray fluorescence spectrometry / J. Anal. Chem. 2017. Vol. 72. N 6. P. 608 – 616. DOI: 10.7868/S004445021706010X
17. Revenko A. G., Sharykina D. S. The application of X-ray fluorescence analysis to study the chemical compositions of tea and coffee samples / Anal. Kontrol’. 2019. Vol. 23. N 1. P. 6 – 23 [in Russian]. DOI: 10.15826/analitika.2019.23.1.015
18. Methods of quantitative elemental microanalysis / Gelman N. E., ed. — Moscow: Khimia, 1987. — 293 p. [in Russian].
19. Talanova V. N., Lependina O. L., Buyanovskaya A. G., et al. Sources of errors in nondestructive X-ray fluorescence analysis of small samples diluted with a solid diluent: XRF determination of Mn in cymantrenes / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 10. P. 65 – 69 [in Russian]. DOI: 10.26896/1028-6861-2017-83-10-65-69
20. Talanova V. N., Lependina O. L., Kitaeva D. Kh., et al. Experience in using Alpha-VRA-30 software for determination of iron and zinc content in organometallic compounds and polymers / Zav. Lab. Diagn. Mater. 2018. Vol. 84. N 8. P. 20 – 24 [in Russian]. DOI: 10.26896/1028-6861-2018-84-8-20-24
21. Talanova V. N., Lependina O. L., Kitaeva D. Kh., et al. Rapid X-ray fluorescence analysis of intercalation compounds for molybdenum content / Zavod. Lab. Diagn. Mater. 2020. Vol. 86. N 9. P. 65 – 69 [in Russian]. DOI: 10.26896/1028-6861-2020-86-9-24-29
22. Doerffel K. Statistik in der analytishen Chemie. — Leipzig, 1990. — 268 s.
Review
For citations:
Talanova V.N., Lependina O.L., Kitaeva D.Kh., Kabaeva N.M., Takazova R.U., Buyanovskaya A.G. Rapid X-ray fluorescence analysis of intercalation compounds for molybdenum and cobalt content. Industrial laboratory. Diagnostics of materials. 2021;87(8):12-18. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-8-12-18