

Silicon carbide fibers and whiskers for ceramic matrix composites (review)
https://doi.org/10.26896/1028-6861-2021-87-8-51-63
Abstract
An increase the operating temperature range of structural elements and aircraft assemblies is one of the main goals in developing advanced and new models of aerospace equipment to improve their technical characteristics. The most heat-loaded aircraft structures, such as a combustion chamber, high-pressure turbine segments, nozzle flaps with a controlled thrust vector, must have a long service life under conditions of high temperatures, an oxidizing environment, fuel combustion products, and variable mechanical and thermal loads. At the same time, modern Ti and Ni-based superalloys have reached the limits of their operating temperatures. The leading world aircraft manufacturers — General Electric (USA), Rolls-Royce High Temperature Composite Inc. (USA), Snecma Propulsion Solide (France) — actively conduct fundamental research in developing ceramic materials with high (1300 – 1600°C) and ultrahigh (2000 – 2500°C) operating temperatures. However, ceramic materials have a number of shortcomings attributed to the high brittleness and low crack resistance of monolithic ceramics. Moreover, manufacturing of complex configuration and large-sized ceramic parts faces serious difficulties. Nowadays, ceramic composite materials with a high-temperature matrix (e.g., based on ZrC-SiC) and reinforcing filler, an inorganic fiber, (e.g., silicon carbide) appeared most promising for operating temperatures above 1200°C and exhibited enhanced energy efficiency. Ceramic fibers based on silicon compounds possess excellent mechanical properties: the tensile strength more than 2 GPa, modulus of elasticity more than 200 GPa, and thermal resistance at a temperature above 800°C, thus making them an essential reinforcing component in metal and ceramic composites. This review is devoted to silicon carbide core fibers obtained by chemical vapor deposition of silicon carbide onto a tungsten or carbon core, which makes it possible to obtain fibers a 100 – 150 μm in diameter to be used in composites with a metal matrix. The coreless SiC-fibers with a diameter of 10 – 20 μm obtained by molding a polymer precursor from a melt and used mainly in ceramic composites are also considered. A comparative analysis of the phase composition, physical and mechanical properties and thermal-oxidative resistance of fibers obtained by different methods is presented. Whiskers (filamentary crystals) are also considered as reinforcing fillers for composite materials along with their properties and methods of production. The prospects of using different fibers and whiskers as reinforcing fillers for composites are discussed.
About the Author
A. M. ShestakovRussian Federation
Aleksey Mikhaylovich Shestakov
17, Radio ul., Moscow, 105005, Russia
References
1. Shestakov A. M. Inorganic fibers for ceramic matrix composites (review) / Khim. Volokna. 2020. N 1. P. 16 – 26 [in Russian].
2. Kablov E. N. Composites: today and tomorrow / Metally Evrazii. 2015. N 1. P. 36 – 39 [in Russian].
3. Grashchenkov D. V. Development strategy of non-metallic materials, metallic composite materials and thermal protection / Aviats. Mater. Tekhnol. 2017. N S. P. 264 – 271 [in Russian]. DOI: 10.18577/2071-9140-2017-0-S-264-271
4. Grashchenkov D. V., Evdokimov S. A., Zhestkov B. E., Solntsev S. St., Shtapov V. V. Investigation of the thermochemical effect of an air plasma flow on a high-temperature ceramic composite material / Aviats. Mater. Tekhnol. 2017. N 2(47). P. 31 – 40 [in Russian]. DOI: 10.18577/2071-9140-2017-0-2-31-40
5. Kablov E. N., Nikiforov A. A., Demin S. A., Chesnokov D. V., Vinogradov S. S. Promising coatings for corrosion protection of carbon steels / Stali. 2016. N 6. P. 70 – 81 [in Russian].
6. Grashchenkov D. V., Efimochkin I. Yu., Bolshakova A. N. High-temperature metal-matrix composite materials reinforced with particles and fibers of refractory compounds / Aviats. Mater. Tekhnol. 2017. N S. P. 318 – 328 [in Russian]. DOI: 10.18577/2071-9240-2017-0-S-318-328
7. Sorokin O. Yu. On the question of the mechanism of interaction of carbon materials with silicon (review) / Aviats. Mater. Tekhnol. 2015. N 1(34). P. 65 – 70 [in Russian]. DOI: 10.18577/2071-9140-2015-0-1-65-70
8. Kablov E. N., Grashchenkov D. V., Isaeva N. V., Solntsev S. S., Sevastianov V. G. High-temperature structural composite materials based on glass and ceramics for advanced aircraft products / Steklo Keram. 2012. N 4. P. 7 – 11 [in Russian].
9. Sorokin O. Yu., Grashchenkov D. V., Solntsev S. St., Evdokimov S. A. Ceramic composite materials with high oxidation resistance for advanced aircraft (review) / Tr. VIAM. Élektron. Nauch.-Tekhn. Zh. 2014. N 6. Publ. 08. http://www.viam- works.ru (accessed 24.01.2020) [in Russian]. DOI: 10.18577/2307-6046-2014-0-6-8-8
10. Minakov V. T., Solntsev S. S. Ceramic-matrix composites / Vse Mater. Éntsikloped. Sprav. 2007. N 2. P. 5 – 9 [in Russian].
11. Kablov E. N., Grashchenkov D. V., Isaeva N. V., Solntsev S. St. Promising high-temperature ceramic composite materials / Ross. Khim. Zh. 2010. Vol. LIV. N 1. P. 20 – 24 [in Russian].
12. Grashchenkov D. V., Gunyaev G. M., Minakov V. T., Sorina T. G. SiC-SiC composites reinforced with whiskers / Vse Mater. Éntsikloped. Sprav. 2012. N 5. P. 43 – 48 [in Russian].
13. Kablov E. N. Innovative developments of FSUE «VIAM» SSC RF for the implementation of «Strategic directions for the development of materials and technologies for their processing for the period up to 2030» / Aviats. Mater. Tekhnol. 2015. N 1(34). P. 3 – 33 [in Russian]. DOI: 10.18577/2071-9140-2015-0-1-3-33
14. Cooke Th. F. Inorganic Fibers — A Literature Review / J. Am. Ceram. Soc. 1991. Vol. 74. N 12. P. 2959 – 2978.
15. Carlsonn J. O. Silicon Carbide Fibers / Encyclopedia of Material Science and Engineering. Edited by M. B. Bever. — Oxford, UK: Pergamon Press, 1986. P. 4406 – 4408.
16. Martineau P., Lahaye M., Pailler R., Naslan R., Couzi M., Cruege F. SiC Filament/Titanium Matrix Composites Regarded as Model Composites. Part 1. Filament Microanalysis and Strength Characterization / J. Mater. Sci. 1984. Vol. 19. N 8. P. 2731 – 2748.
17. Bunsell A. R., Berger M.-H. Ceramic fibres / High-performance fibres. Edited by J. W. S. Hearle. — Woodhead Publishing, 2001. P. 239 – 258.
18. Cheng T. T., Jones I. P., Shatwell R. A., Doorbar P. The microstructure of sigma 1140+ SiC fibres / Mater. Sci. Eng. A. 1999. Vol. 260. N 1 – 2. P. 139 – 145.
19. Guo C., Zhang C., He L., Jin B., Shi N. Microstructure characterization of long W core SiC fiber / J. Mater. Sci. Technol. 2007. Vol. 23. N 5. P. 677 – 684.
20. Toplišek T., Gec M., Iveković A., Novak S., Kobe S., Dražić G. Analytical Electron Microscopy of W-Core β-SiC Fibers for Use in an SiC-Based Composite Material for Fusion Applications / Microsc. Microanal. 2013. Vol. 19. N 5. P. 136 – 139.
21. Zhang R.-J., Yang Y.-Q., Shen W.-T., Wang C., Luo X. Microstructure of SiC fiber fabricated by two-stage chemical vapor deposition on tungsten filament / J. Crystal Growth. 2010. Vol. 313. P. 56 – 61.
22. Sone H., Kaneko T., Miyakawa N. In situ measurements and growth kinetics of silicon carbide chemical vapor deposition from methyltrichlorosilane / J. Crystal Growth. 2000. Vol. 219. P. 245 – 252.
23. Noeth A. Fabrication of large diameter SiC monofilaments by polymer route / J. Eur. Ceram. Soc. 2014. Vol. 34. N 6. P. 1487 – 1492.
24. DiCarlo J. A., Yun H.-M. Non-oxide (silicon carbide) fibers / Handbook of Ceramic Composites. Edited by N. P. Bansal. — Kluwer Acad. Publishers, 2005. P. 33 – 52.
25. Nutt S. R., Wawner F. E. Silicon carbide filaments: Microstructure / J. Mater. Sci. 1985. Vol. 20. N 6. P. 1953 – 1960.
26. Christin F., Naslain R., Bernard C. A Thermodynamic and Experimental Approach of Silicon Carbide-CVD Application to the CVD-infiltration of Porous Carbon-Carbon Composites / Proc. of the 7th Int. Conf. on CVD. Edited by T. O. Sedgwick, H. Lydtin. — Princeton: The Electrochemical Society, 1979. P. 499 – 514.
27. Ning X. J., Pirouz P. The microstructure of SCS – 6 SiC fiber / J. Mater. Res. 1991. Vol. 6. N 10. P. 2234 – 2248.
28. DiCarlo J. A. Creep of Chemically Vapor Deposited SIC Fibres / J. Mater. Sci. 1986. Vol. 21. N 1. P. 217 – 224.
29. Flores O., Bordia R. K., Nestler D., Krenkel W., Motz G. Ceramic Fibers Based on SiC and SiCN Systems: Current Research, Development, and Commercial Status / Adv. Eng. Mater. 2014. Vol. 16. N 6. P. 621 – 636.
30. Lütjering G., Williams J. C. Titanium Matrix Composites / Titanium. — Springer, 2007. P. 367 – 382.
31. Miracle D. B., Donaldson S. L. Introduction to Composites / ASM Handbook. Vol. 21. Composites. — ASM International, 2001. P. 1 – 18.
32. Sidorov D. V., Shcherbakova G. I. High-tech components of composite materials and special fibers for a wide range of applications / Khim. Tekhnol. 2016. Vol. 17. N 4. P. 183 – 192 [in Russian].
33. Lackey W. J., Hanigofsky J. A., Freeman G. B., Hardin R. D., Prasad A. Continuous fabrication of silicon carbide fiber tows by chemical vapor deposition / J. Am. Ceram. Soc. 1995. Vol. 78. N 6. P. 1564 – 1570.
34. Lackey W. J., Vaidyaraman S., Beckloff B. N., Moss T. S., Lewis J. S. Mass transfer and kinetics of the chemical vapor deposition of SiC onto fibers / J. Mater. Res. 1998. Vol. 13. N 8. P. 2251 – 2261.
35. Huang H., Chen D., Li Z., Huang X. Study on the influence of reaction temperature on the preparation of C-core SiC filaments / Proc. Eng. 2012. Vol. 27. P. 1347 – 1353.
36. Féron O., Chollon G., Dartigues F., Langlais F., Naslain R. In situ kinetic analysis of SiC filaments CVD / Diamond Rel. Mater. 2002. Vol. 11. N 3 – 6. P. 1234 – 1238.
37. McHugh K. M., Garnier J. E., Griffith G. W. Synthesis and analysis of alpha silicon carbide components for encapsulation of fuel rods and pellets / Proc. of the ASME 2011 Small Modular Reactors Symposium. 2011. P. 165 – 169.
38. US Pat. N 20,120,088. Garnier J. E., Griffith G. W. Methods of producing silicon carbide fibers, silicon carbide fibers, and articles including same. 04.12.2012.
39. Mun S. Y., Lim H. M., Lee D. J. Preparation and thermal properties of polyacrylonitrile-based carbon fiber — silicon carbide core — shell hybrid / Thermochim. Acta. 2015. Vol. 600. P. 62 – 66.
40. US Pat. N 3,246,950. Gruber B. A. Method for Preparing Fibrous Silicon Carbide. 04.1966.
41. Chou C. C., Ko Y. C. Formation and Structure of SiC Whiskers from Metallic Silicon and Coal Tar Pitch in Refractories During Sintering / J. Mater. Sci. Lett. 1986. Vol. 5. N 2. P. 209 – 213.
42. US Pat. N 3,754,076. Cutler B. I. Production of Silicon Carbide from Rice Hulls, 08.1973.
43. Ryan C. E., Berman I., Marshall R. C., Considine D. P., Hawley J. J. Vapor-Liquid-Solid and Melt Growth of Silicon Carbide / J. Crystal Growth. 1967. Vol. 1. N 5. P. 255 – 262.
44. Parratt N. J. Fiber-Reinforced Materials Technology. — London, UK: Van Nostrand Reinhold, 1972. P. 180.
45. Worthy W. Uses for New Silicon Polymers Investigated / Chem. Eng. News. 1980. Vol. 58. N 23. P. 20.
46. Kajiwara M. The Formation of β-SiC Fibres with SiO2–C– NaF(AlF3) Components / J. Mater. Sci. 1986. Vol. 21. N 7. P. 2254 – 2256.
47. Iwanaga H., Yoshie T., Katuki H., Egashira M. Defect Identification in Vapour-Grown β-SiC Whiskers / J. Mater. Sci. Lett. 1986. Vol. 5. N 9. P. 946 – 948.
48. Milewski J. V. Whiskers / Concise Encyclopedia of Composite Materials. Edited by A. Kelly. — Oxford, UK: Pergamon Press, 1989. P. 281 – 284.
49. Hasegawa Y., Okamura K. Synthesis of Precursors for SiC–C Fibers by Copyrolysis of Polysilane and Pitch / Yogyo Kyokai Shi. 1987. Vol. 95. N 1. P. 99 – 103.
50. Penn B. G., Ledbetter F. E., Clemons J. M., Daniels J. G. Preparation of Silicon Carbide-Silicon Nitride Fibers by the Controlled Pyrolysis of Polycarbosilazane Precursors / J. Appl. Polymer Sci. 1982. Vol. 27. N 10. P. 3751 – 3761.
51. Penn B. G., Ledbetter F. E., Clemons J. M. An Improved Process for Preparing Tris(N-methylamino)Methylsilane Monomer for Use in Producing Silicon Carbide-Silicon Nitride Fibers / Industr. Eng. Chem. Process Design Devel. 1984. Vol. 23. N 2. P. 217 – 220.
52. Penn B. G., Daniels J. G., Ledbetter F. E., Clemons J. M. Preparation of Silicon Carbide-Silicon Nitride Fibers by the Pyrolysis of Polycarbosilazane Precursors: A Review / Polymer Eng. Sci. 1986. Vol. 26. N 17. P. 1191 – 1194.
53. Legrow G. E., Lim T. F., Lipowitz J., Reaoch D. S. Ceramics from Hydridopolysilazane / Am. Ceram. Soc. Bull. 1987. Vol. 66. N 2. P. 109 – 114.
54. Chaim R., Heuer A. H., Chen R. T. Microstructural and Microchemical Characterization of Silicon Carbide and Silicon Carbonitride Ceramic Fibers Produced from Polymer Precursors / J. Am. Ceram. Soc. 1988. Vol. 71. N 11. P. 960 – 969.
55. Yajima S., Iwai T., Yamamura T., Okamura K., Hasegawa Y. Synthesis of a Polytitanocarbosilane and its Conversion into Inorganic Compounds / J. Mater. Sci. 1981. Vol. 16. N 5. P. 1349 – 1355.
56. Yajima S., Okamura K., Tanaki J., Hayase T. High-Temperature Strengths of Aluminum Composite Reinforced with Continuous SiC Fibre / J. Mater. Sci. 1981. Vol. 16. N 11. P. 3033 – 3038.
57. Simon G., Bunsell A. R. The Creep of Silicon Carbide Fibers / J. Mater. Sci. Lett. 1983. Vol. 2. N 2. P. 80 – 82.
58. Simon G., Bunsell A. R. Mechanical and Structural Characterization of the Nicalon Silicon Carbide Fibre / J. Mater. Sci. 1984. Vol. 19. N 11. P. 3649 – 3657.
59. Simon G., Bunsell A. R. Creep Behaviour and Structural Characterization at High Temperatures of Nicalon SiC Fibres / J. Mater. Sci. 1984. Vol. 19. N 11. P. 3658 – 3670.
60. Mah T., Hecht N. L., McCullum D. E., Hoenigman J. R., Kim H. M., Katz A. P., Lipsitt H. A. Thermal Stability of SiC Fibres (Nicalon) / J. Mater. Sci. 1984. Vol. 19. N 4. P. 1191 – 1201.
61. Sakai M., Watanabe K. Effect of Pre-treatment and Annealing Temperature on the Strength of SiC–Ni Monofilament Composites / J. Mater. Sci. 1984. Vol. 19. N 10. P. 3430 – 3436.
62. Martineau P., Pailler R., Lahaga M., Naslain R. SiC Filament/Titanium Matrix Composites Regarded as Model Composites. Part 2. Fibre/Matrix Chemical Interactions at High Temperatures / J. Mater. Sci. 1984. Vol. 19. N 8. P. 2749 – 2770.
63. Strife J. R., Prewo K. M. Silicon Carbide Fibre-Reinforced Resin Matrix Composites / J. Mater. Sci. 1982. Vol. 17. N 1. P. 65 – 72.
64. Tawil H., Bentsen L. D., Baskaron S., Hasselman D. P. H. Thermal Diffusivity of Chemically Vapour Deposited Silicon Carbide Reinforced with Silicon Carbide or Carbon Fibres / J. Mater. Sci. 1985. Vol. 20. N 9. P. 3201 – 3212.
65. Yamamura T., Ishikawa T., Okamura K. Development of a New Continuous Si – Ti – C – O Fibre Using an Organometallic Polymer Precursor / J. Mater. Sci. 1988. Vol. 23. N 7. P. 2589 – 2594.
66. Sawyer L. C., Jamieson M., Brikowski D., Haider M. I., Chen R. T. Strength, Structure, and Fracture Properties of Ceramic Fibers Produced from Polymeric Precursors: I, Base-Line Studies / J. Am. Ceram. Soc. 1987. Vol. 70. N 11. P. 798 – 810.
Review
For citations:
Shestakov A.M. Silicon carbide fibers and whiskers for ceramic matrix composites (review). Industrial laboratory. Diagnostics of materials. 2021;87(8):51-63. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-8-51-63