

Исследование технологических дефектов, возникающих во время автоматизированной выкладки препрегов (обзор)
Аннотация
При изготовлении заготовок из полимерных композиционных материалов (ПКМ) для последующего автоклавного или другого вида формования применяют такие технологии, как автоматизированные выкладки волокон (Automated Fiber Placement — AFP) и лент (Automated Tape Laying — ATL). В процессе выкладки могут образовываться дефекты, частота возникновения которых зависит от сложности детали и технологических параметров (ширины выкладываемых лент, скорости выкладки и простоя, температуры выкладки, отклонения от расчетной траектории и др.). В работе представлен обзор основных дефектов, анализ причин их появления и влияния на физико-механические свойства композиционных материалов. Показано, что дефекты меняют толщину и снижают прочность ПКМ при растяжении и сжатии. Кроме того, неточность размещения волокон при использовании AFP-технологии негативно влияет на качество материалов. Приведенные результаты могут быть использованы при дальнейшем исследовании влияния дефектов на свойства ПКМ и причин, их вызывающих, а также при разработке перспективной универсальной вычислительной программы, с помощью которой можно сократить число соответствующих экспериментальных испытаний.
Об авторах
П. Н. ТимошковРоссия
Павел Николаевич Тимошков
105005, Москва, ул. Радио, д. 17
М. Н. Усачева
Россия
Мария Николаевна Усачева
105005, Москва, ул. Радио, д. 17
А. В. Хрульков
Россия
Александр Владимирович Хрульков
105005, Москва, ул. Радио, д. 17
В. А. Гончаров
Россия
Виталий Александрович Гончаров
105005, Москва, ул. Радио, д. 17
Список литературы
1. Chawla K. K. Composite materials: science and engineering. — New York: Springer-Verlag, 2012. — 542 p. DOI: 10.1007/978-0-387-74365-3
2. Kablov E. N., Erofeev V. T., Zotkina M. M., et al. Plasticized epoxy composites for manufacturing of composite reinforcement / Zh. Fiz. Konf. Ser. 2020. Vol. 1687. P. 12 – 31 [in Russian]. DOI: 10.1088/1742-6596/1687/1/012031
3. Kablov E. N. New generation materials and technologies for their digital processing / Vestn. RAN. 2020. Vol. 90. N 2. P. 225 – 228 [in Russian].
4. Kablov E. N., Chursova L. V., Lukina N. F., et al. A study of epoxide — polysulfone polymer systems for high-strength adhesives of aviation purpose / Polimery. Ser. D. 2017. Vol. 10. N 3. P. 225 – 229 [in Russian]. DOI: 10.1134/S1019331620020124
5. Timoshkov P. N. Equipment and materials for the technology of automated calculations prepregs / Aviats. Mater. Tekhnol. 2016. N 2. P. 35 – 39 [in Russian]. DOI: 10.18577/2071-9140-2016-0-2-35-39
6. Timoshkov P. N., Goncharov V. A., Grigoreva L. N., et al. Robotic prepreg stacking as an alternative to ATL and AFP (overview) / Tr. VIAM. 2021. N 3. Article 08 [in Russian]. DOI: 10.18577/2307-6046-2021-0-3-87-98
7. Lukaszewicz D., Ward C., Potter K. The engineering aspects of automated prepreg layup: History, present and future / Composites: Part B. 2012. Vol. 43(3). P. 997 – 1009. DOI: 10.1016/j.compositesb.2011.12.003
8. Chevalier P., Kassapoglou Ch., Gürdal Z. Fatigue behavior of composite laminates with automated fiber placement induced defects (review) / Int. J. Fatigue. 2020. N 140. P. 1 – 23. DOI: 10.1016/j.ijfatigue.2020.105775
9. Oromiehie E., Prusty B., Compston P., Rajan G. Automated fibre placement based composite structures: Review on the defects, impacts and inspections techniques / Composite Struct. 2019. Vol. 224. P. 1 – 14.
10. Kim B., Hazra K., Weaver P., Potter K. Limitations of fibre placement techniques for variable angle tow composites and their process-induced defects / 18th International Conference on Composite Materials. — ACCIS. University of Bristol. 2011. P. 1 – 5.
11. Tatting B., Gurdal Z. Automated Finite Element Analysis of Elastically-Tailored Plates. NASA / CR: Plates Technical report. 2002. https://ntrs.nasa.gov/api/citations/20040031675/downloads/20040031675.pdf (accessed 19.05.2021)
12. Wu K., Gürdal Z., Starnes J. Structural response of compression-loaded tow-placed, variable stiffness panels / 43rd AIAA structures, structural dynamics and materials conference. — Reston, VA: AIAA Permissions Department, 2002. P. 43 – 44. DOI: 10.2514/6.2002-1512
13. Sawicki A. J., Minguet P. J. The Effect of intraply overlaps and gaps upon the compression strength of composite laminates / 39th AIAA structural, dynamics and materials conferences. — Reston, VA: AIAA Permissions Department, 1998. P. 744 – 754. DOI: 10.2514/6.1998-1786
14. Fayazbakhsh K., Arian N., Pasini D., Lessard L. Defect layer method to capture effect of gaps and overlaps in variable stiffness laminates made by Automated Fiber Placement / Composite Struct. 2013. Vol. 97. P. 245 – 251. DOI: 10.1016/j.compstruct.2012.10.031
15. Cemenska J., Rudberg T., Henscheid M. Automated In-Process Inspection System for AFP Machines / SAE Int. J. Aerospace. 2015. Vol. 8(2). P. 303 – 309. DOI: 10.4271/2015-01-2608
16. Timoshkov P. N., Goncharov V. A., Usacheva M. N., Khrulkov A. V. Effect of gaps and overlaps when laying prepregs on the mechanical properties of carbon plastics (review) / Tr. VIAM. 2018. N 12. Article 08 [in Russian]. DOI: 10.18577/2307-6046-2018-0-12-71-78
17. Rakhshbahar M., Sinapius M. A Novel Approach: Combination of Automated Fiber Placement (AFP) and Additive Layer Manufacturing (ALM) / J. Composite Sci. 2018. N 2(42). P. 1 – 9. DOI: 10.3390/jcs2030042
18. Croft K., Lessard L., Pasini D., et al. Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates / Composites. Part A. Appl. Sci. Manufact. 2011. Vol. 42(5). P. 484 – 491. DOI: 10.1016/j.compositesa.2011.01.007
19. Nguyen M., Vijayachandran A., Davidson P., et al. Effect of automated fiber placement (AFP) manufacturing signature on mechanical performance of composite structures / Composite Struct. 2019. N 228. P. 1 – 43. DOI: 10.2514/6.2019-0516
20. Cairns D. S., Iicewicz L. B., Walker T. N. Far-field and near-field strain response of automated towplaced laminates to stress concentrations / Composites Eng. 1993. Vol. 3. Issue 11. P. 1087 – 1097. DOI: 10.1016/0961-9526(93)90023-D
21. Heinecke F., Brink W., Wille T. Assessing the structural response of automated fibre placement composite structures with gaps and overlaps by means of numerical approaches / 20th International Conference on Composite Materials. — Copenhagen: ICCM, 2015. P. 1 – 20. https://www.researchgate.net/publication (accessed 12.05.2021)
22. Lan M., Cartié D., Davies P., Baley C. Influence of embedded gap and overlap fiber placement defects on the microstructure and shear and compression properties of carbon-epoxy laminates / Composites. Part A. Appl. Sci. Manufact. 2016. Vol. 82. P. 198 – 207. DOI: 10.1016/j.compositesa.2015.12.007
23. Tatting B., Gurdal Z. Design and manufacture of elastically tailored tow placed plates / National Aeronautics and Space Administration, National Technical Information Service (NTIS). — Springfield, 2002. https:/www.researchgate.net/publication/24326440_Design_and_Manufacture_of_Elastically_Tailored_Tow_Placed_Plates (accessed 24.04.2021)
24. Iarve E., Kim R. Strength prediction and measurement in model multilayered discontinuous tow reinforced composites / J. Composite Mater. 2004. Vol. 38(1). P. 5 – 18. DOI: 10.1177/ 0021998304038215
25. Hörmann P. Thermoset automated fibre placement on steering effects and their prediction. — Germany: Verlag Dr. Hut, 2016. — 192 p.
26. Wu K., Tatting B., Smith B., et al. Design and Manufacturing of Tow-Steered Composite Shells Using Fiber Placement / 50th AIAA structures, structural dynamics and materials conference. — Boston, 2009. P. 1 – 18. DOI: 10.2514/6.2009-2700
27. Blom A. W., Lopes C. S., Kromwijk P. J., et al. A theoretical model to study the influence of tow-drop areas on the stiffness and strength of variablestiffness laminates / J. Composite Mater. 2009. Vol. 43(5). P. 403 – 425. DOI: 10.1177/0021998308097675
28. Jelf P. M., Fleck N. A. Compression failure mechanisms in unidirectional composites / J. Composite Mater. 1992. Vol. 26(18). P. 2706 – 2726. DOI: 10.1177/002199839202601804
29. Budiansky B., Fleck N. Compressive failure of fiber composites / J. Mech. Phys. Solids. 1993. Vol. 41. Issue 1. P. 183 – 211. DOI: 10.1016/0022-5096(93)90068-Q
30. Slaughter W. S., Fleck N. A. Microbuckling of fiber composites with random initial fiber waviness / J. Mech. Phys. Solids. 1994. Vol. 42. Issue 11. P. 1743 – 1766. DOI: 10.1016/0022-5096(94)90070-1
31. Potter K., Langer C., Hodgkiss B., Lamb S. Sources of variability in uncured aerospace grade unidirectional carbon fibre epoxy preimpregnate / Composites. Part A. Appl. Sci. Manufact. 2007. Vol. 38. Issue 3. P. 905 – 916. DOI: 10.1016/j.compositesa.2006.07.010
32. Joyce P., Kugler D., Moon T. A technique for characterizing process-induced fiber waviness in unidirectional composite laminates-using optical microscopy / J. Composite Mater. 1997. Vol. 31. Issue 17. P. 1694 – 1727. DOI: 10.1177/002199839703101702
33. Wang L. Effect of in-plane fiber waviness on the static and fatigue strength of fiberglass. — Bozeman: Montana State University at Bozeman, 2001. — 80 p.
34. Adams D., Bell S. Compression strength reductions in composite laminates due to multiple-layer waviness / Composites Sci. Technol. 1995. Vol. 53. Issue 2. P. 207 – 212. DOI: 10.1016/0266-3538(95)00020-8
35. Bogetti T. A., Gillespie J. W., Lamontia M. A. Influence of ply waviness on the stiffness and strength reduction on composite laminates / J. Thermoplastic Composite Mater. 1992. Vol. 5. Issue 4. P. 344 – 369. DOI: 10.1177/089270579200500405
36. Fedulov B., Antonov F., Safonov A., et al. Influence of fibre misalignment and voids on composite laminate strength / J. Composite Mater. 2015. Vol. 49. Issue 23. P. 2887 – 2296. DOI: 10.1177/0021998314557533
37. Chun H.-J., Shin J.-Y., Daniel I. M. Effects of material and geometric nonlinearities on the tensile and compressive behavior of composite materials with fiber waviness / Composites Sci. Technol. 2001. Vol. 61. Issue 1. P. 125 – 134. DOI: 10.1016/S0266-3538(00)00201-3
38. Hsiao H. M., Daniel I. M. Elastic properties of composites with fiber waviness / Composites. Part A. Appl. Sci. Manufact. 1996. Vol. 27. Issue 10. P. 931 – 941. DOI: 10.1016/1359-835X(96)00034-6
39. Zympleoudis E., Potter K., Weaver P., Kim B. Effect of material characteristics on the layup quality of the continuous multi-tow shearing (CMTS) process / 17th European Conference on Composite Materials. — Münich, Germany: ECCM, 2016. P. 1 – 6.
40. Rajan S., Sutton M. A., Wehbe R., et al. Experimental investigation of prepreg slit tape wrinkling during automated fiber placement process using StereoDIC / Composites. Part B. Eng. 2019. Vol. 160. P. 546 – 557. DOI: 10.1016/j.compositesb.2018.12.017
41. Kim B., Potter K., Weaver P. Continuous tow shearing for manufacturing variable angle tow composites / Composites. Part A. Appl. Sci. Manufact. 2012. Vol. 43. Issue 8. P. 1347 – 1356. DOI: 10.1016/j.compositesa.2012.02.024
42. Timoshkov P. N., Khrulkov A. V., Yazvenko L. N., Usacheva M. N. Polymer composite materials for out of autoclave technology (review) / Tr. VIAM. 2018. N 3. Paper 05 [in Russian].
Рецензия
Для цитирования:
Тимошков П.Н., Усачева М.Н., Хрульков А.В., Гончаров В.А. Исследование технологических дефектов, возникающих во время автоматизированной выкладки препрегов (обзор). Заводская лаборатория. Диагностика материалов. 2021;87(11):33-38. https://doi.org/10.26896/1028-6861-2021-87-11-33-38
For citation:
Timoshkov P.N., Usacheva M.N., Goncharov V.A., Khrulkov A.V. Study of technological defects arising during automated laying of prepregs (review). Industrial laboratory. Diagnostics of materials. 2021;87(11):33-38. (In Russ.) https://doi.org/10.26896/1028-6861-2021-87-11-33-38