

Determination of polyorganosiloxanes (by silicon) in water by extraction high-resolution continuum source electrothermal atomic absorption spectrometry
https://doi.org/10.26896/1028-6861-2022-88-1-I-14-24
Abstract
A method for the determination of polyorganosiloxanes (by silicon) in water using high-resolution electrothermal atomic absorption spectrometry with a continuous spectrum source and preliminary extraction of polyorganosiloxanes by benzene from the analyzed sample is proposed. The quantitative determination of polyorganosiloxanes (by silicon) was carried out on a contrAA® 700 atomic absorption spectrometer in a cross-heating furnace. Natural water was used to optimize the parameters of the temperature – time program of the atomizer. To eliminate chemical interference during silicon determination by proposed method, graphite cuvettes were modified with a permanent modifier to form a carbide coating. A solution of sodium tungstate was used as a permanent modifier. Thermal stabilization of silicon in a graphite furnace was achieved in the presence of a mixed palladium-magnesium modifier in the nitrate form. The accuracy of the results was confirmed by spike test. The developed method of analysis was used to determine the content of polyorganosiloxanes (by silicon) in natural water. The metrological characteristics of the method were assessed in the range of determined silicon contents 0.01 – 100 mg/dm3.
About the Authors
T. N. ShtinRussian Federation
Tat’yana N. Shtin
30, ul. Popova, 620014, Yekaterinburg
V. B. Gurvich
Russian Federation
Vladimir B. Gurvich
30, ul. Popova, 620014, Yekaterinburg
O. E. Galasheva
Russian Federation
Oksana E. Galasheva
30, ul. Popova, 620014, Yekaterinburg
I. G. Shelomentsev
Russian Federation
Ivan G. Shelomentsev
30, ul. Popova, 620014, Yekaterinburg
L. K. Neudachina
Russian Federation
Lyudmila K. Neudachina
19, ul. Mira, 620002, Yekaterinburg
S. A. Shtin
Russian Federation
Sergei A. Shtin
19, ul. Mira, 620002, Yekaterinburg
References
1. State Standard GOST 13032–77. Polymethylsiloxane liquids. Technical conditions. — Moscow: Izd. standartov, 1977. — 17 p. [in Russian].
2. State Standard GOST 13004–77. Polyethylsiloxane liquids. Technical conditions. — Moscow: Izd. standartov, 1977. — 13 p. [in Russian].
3. Kraev I. D., Popkov O. V., Shuldeshov E. M., et al. Prospects for the use of organosilicon elastomers in the development of modern polymer materials and coatings for various purposes / Trudy VIAM. 2017. N 12(60). P. 48 – 62 [in Russian]. DOI: 10.18577/2307-6046-2017-0-12-5-5
4. Buldakov A. S. Food additive: Guide. — St. Petersburg: Ut, 1996. — 240 p. [in Russian].
5. Sarakuz O. N., Goryainov G. I., Kapralova V. M., Slutsker A. I. New spatially crosslinked segmented polyethyruretansiloxane elastomers for medical implants / Nauch.-Tekhn. Vedom. SpbGPU. 2012. N 1. P. 100 – 107 [in Russian].
6. Savenkova A. V., Chursova L. V., Eliseev O. A., Glasov P. A. Sealants of aeronautical application / Aviats. Mater. Tekhnol. 2012. N 3(24). P. 40 – 43 [in Russian].
7. Hidalgo-Ruz V., Gutow L., Thompson R. C., Thiel M. Microplastics in the marine environment: a review of the methods used for identification / Environ. Sci. Technol. 2012. Vol. 46. N 6. P. 3060 – 3075. DOI: 10.1021/es2031505
8. Wagner M., Scherer C., Alvarez-Muñoz D., et al. Microplastics in freshwater ecosystems: what we know and what we need to know / Environ. Sci. Eur. 2014. Vol. 26. N 12. P. 1 – 9. DOI: 10.1186/s12302-014-0012-7
9. Davis W., Murphy A. G. Plastic in surface waters of the Inside Passage and beaches of the Salish Sea in Washington State / Mar. Pollut. Bull. 2015. Vol. 97. P. 169 – 177. DOI: 10.1016/j.marpolbul.2015.06.019
10. Manalu A. A., Hariyadi S., Wardiatno Y. Microplastics abundance in coastal sediments of Jakarta Bay, Indonesia / AACL Bioflux. 2017. Vol. 10. N 5. P. 1164 – 1173.
11. Sighicelli M., Pietrelli L., Lecce F., et al. Microplastic pollution in the surface waters of Italian Subalpine Lakes / Environ. Pollut. 2018. Vol. 236. P. 645 – 651. DOI: 10.1016/j.envpol.2018.02.008
12. Andrady A. L. Microplastics in the marine environment / Mar. Pollut. Bull. 2011. Vol. 62. N 8. P. 1596 – 1605. DOI: 10.1016/j.marpolbul.2011.05.030
13. Alloy A. B., Vallejo B. M., Juinio-Meñez M. A. Increased plastic litter cover affects the foraging activity of the sandy intertidal gastropod Nassariuspullus / Mar. Pollut. Bull. 2011. Vol. 62. N 8. P. 1772 – 1779. DOI: 10.1016/j.marpolbul.2011.05.021
14. Boerger C. M., Lattin G. L., Moore S. L., Moore C. J. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre / Mar. Pollut. Bull. 2010. Vol. 60. N 12. P. 2275 – 2278. DOI: 10.1016/j.marpolbul.2010.08.007
15. Farrell P., Nelson K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.) / Environ. Pollut. 2013. Vol. 177. P. 1 – 3. DOI: 10.1016/j.envpol.2013.01.046
16. Foekema E. M., de Gruijter C., Mergia M. T., et al. Plastic in North Sea fish / Environ. Sci. Technol. 2013. Vol. 47. N 15. P. 8818 – 8824. DOI: 10.1021/es400931b
17. Ivar do Sul J. A., Costa M. F. The present and future of microplastic pollution in the marine environment / Environ. Pollut. 2014. Vol. 185. P. 352 – 364. DOI: 10.1016/j.envpol.2013.10.036
18. Sibirtsova E. N. Microplastics pollution of Sevastopol beaches sediment during the summer 2016 – 2017 / Ékol. Bezopasn. Pribrezh. Shel’f. Zon Morya. 2018. N 1. P. 64 – 73 [in Russian]. DOI: 10.22449/2413-5577-2018-1-64-73
19. Bulanov A. Yu., Gorodetsky V. M., Sbulutko E. M., et al. Influence of colloid volume-replacing solutions on a changed hemostasis system / Anesteziol. Reanimatol. 2004. N 2. P. 25 – 30 [in Russian].
20. Yermolayeva K. R., Lazarev V. V. Clinically significant aspects of colloid iv fluid (Literature Review) / Ross. Vestn. Detsk. Khirurgii Anesteziol. Reanimatol. 2013. Vol. 3. N 2. P. 89 – 97 [in Russian].
21. Savanina Ya. V., Barsky E. L., Fomina I. A., Lobakova E. S. Pollution of aquatic medium by microparticle of polymers / Inf. Tekhnol. Nauke Obraz. Upravl. 2019. N 2. P. 54 – 57 [in Russian].
22. Agarkova-Lyakh I. V., Sibirtsova E. N. Adaptation of a method of the granulometric analysis for studying of microplastic pollution of deposits of a coastal zone of the sea / Printsipy Ékol. 2019. N 3. P. 155 – 162 [in Russian].
23. Połeć M., Aleksander-Kwaterczak U., Wątor K., Kmiecik E. The occurrence of microplastics in freshwater systems — preliminary results from Krakow (Poland) / Geol., Geophys. Environ. 2018. Vol. 44. N 4. P. 391 – 400. DOI: 10.7494/GEOL.2018.44.4.391
24. Eerkes-Medrano D., Leslie H. A., Quinn B. Microplastics in drinking water: A review and assessment / Current Opinion Environ. Sci. Health. 2018. Vol. 7. N 7. P. 69 – 75. DOI: 10.1016/j.coesh.2018.12.001
25. Zobkov M. B., Esiukova E. E. Microplastics in a marine environment: review of methods for sampling, processing, and analyzing microplastics in water, bottom sediments, and coastal deposits / Oceanology. 2018. Vol. 58. N 1. P. 137 – 143. DOI: 10.1134/S0001437017060169
26. Tamminga M., Hengstmann E., Fischer E. K. Nile Red Staining as a Subsidiary Method for Microplastic Quantification: A Comparison of Three Solvents and Factors Influencing Application Reliability / SDRP J. Earth Sci. Environ. Studies. 2017. Vol. 2. N 2. P. 165 – 172. DOI: 10.15436/JESES.2.2.1
27. Mason S. A., Welch V. G., Neratko J. Synthetic polymer contamination in Bottled water / Front. Chem. 2018. Vol. 6. 407. P. 1 – 11. DOI: 10.3389/fchem.2018.00407
28. Song Y. K., Hong S. H., Jang M., et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples / Mar. Pollut. Bull. 2015. Vol. 93. N 1 – 2. P. 202 – 209. DOI: 10.1016/j.marpolbul.2015.01.015
29. Tagg A. S., Sapp M., Harrison J. P., Ojeda J. J. Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging / Anal. Chem. 2015. Vol. 87. N 12. P. 6032 – 6040. DOI: 10.1021/acs.analchem.5b00495
30. Cole M., Webb H., Lindeque P. K., et al. Isolation of microplastics in biota-rich seawater samples and marine organisms / Sci. Rep. 2014. Vol. 4. 4528. P. 1 – 8. DOI: 10.1038/srep04528
31. Cole M., Lindeque P., Fileman E., et al. Microplastic Ingestion by Zooplankton / Environ. Sci. Technol. 2013. Vol. 47. N 12. P. 6646 – 6655. DOI: 10.1021/es400663f
32. Van Cauwenberghe L., Vanreusel A., Mees J., Janssen C. R. Microplastic pollution in deep-sea sediments / Environ. Pollut. 2013. Vol. 182. P. 495 – 499. DOI: 10.1016/j.envpol.2013.08.013
33. Dekiff J. H., Remy D., Klasmeier J., Fries E. Occurrence and spatial distribution of microplastics in sediments from Norderney / Environ. Pollut. 2014. Vol. 186. P. 248 – 256. DOI: 10.1016/j.envpol.2013.11.019
34. Nuelle M.-T., Dekiff J. H., Remy D., Fries E. A new analytical approach for monitoring microplastics in marine sediments / Environ. Pollut. 2014. Vol. 184. P. 161 – 169. DOI: 10.1016/j.envpol.2013.07.027
35. Fries E., Dekiff J. H., Willmeyer J., et al. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy / Environ. Sci. Processes Impacts. 2013. Vol. 15. N 10. P. 1949 – 1956. DOI: 10.1039/C3EM00214D
36. Nakadi F. V., Prodanov C., Boschetti W., et al. Determination of silicon in biomass and products of pyrolysis process via high-resolution continuum source atomic absorption spectrometry / Talanta. 2018. Vol. 179. N 3. P. 828 – 835. DOI: 10.1016/j.talanta.2017.12.022
37. Bok R. Decomposition methods in analytical chemistry. — Moscow: Khimiya, 1984. — 429 p. [in Russian].
38. Ravdel A. A., Ponomareva A. M. A brief reference of physico-chemical quantities. — Leningrad: Khimiya, 1983. — 232 p. [in Russian].
39. Potapova V. G., Grebenyuk N. N., Blank A. B. Electrothermal atomic absorption determination of silicon in single crystals based on alkali metal halides / J. Anal. Chem. 1998. Vol. 53. N 8. P. 768 – 771 [in Russian].
40. Pupyshev A. A. Atomic absorption spectral analysis. — Moscow: Tekhnosfera, 2009. — 782 p. [in Russian].
41. Sourcebook of sulfuric acid / K. M. Malin, Ed. — Moscow: Khimiya, 1971. — 146 p. [in Russian].
Review
For citations:
Shtin T.N., Gurvich V.B., Galasheva O.E., Shelomentsev I.G., Neudachina L.K., Shtin S.A. Determination of polyorganosiloxanes (by silicon) in water by extraction high-resolution continuum source electrothermal atomic absorption spectrometry. Industrial laboratory. Diagnostics of materials. 2022;88(1(I)):14-24. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-1-I-14-24