

Исследование in situ процессов горения гетерогенных сред методом динамической рентгенографии
https://doi.org/10.26896/1028-6861-2022-88-1-I-49-61
Аннотация
При исследованиях конденсированных веществ в процессе химических реакций и фазовых превращений необходимы in situ методы диагностики, позволяющие получать данные о структуре и составе материала в режиме реального времени. В работе представлены результаты диагностики быстропротекающих процессов в гетерогенных конденсированных средах, в том числе самораспространяющегося высокотемпературного синтеза, методом динамической рентгенографии. Метод основан на применении скоростной регистрации дифракционных спектров в широком угловом интервале и дает возможность получать in situ информацию об эволюции кристаллической структуры реагирующих веществ. В качестве источника излучения использовали рентгеновскую трубку. На базе порошкового дифрактометра, быстродействующего линейного детектора и реакционных камер разработана эффективная система анализа с разрешением по времени в диапазоне 10–1 – 102 с. Создан комплекс объектно-ориентированных дифракционных методик для исследования динамики фазовых переходов при самораспространяющемся высокотемпературном синтезе неорганических материалов, горении энергетических систем и жидких растворов, кристаллизации аморфных сплавов, при анализе фазового состава материалов в процессе термической обработки. Полученные результаты могут быть использованы для выявления механизма структурно-химических превращений в конденсированных средах.
Об авторах
Д. Ю. КовалевРоссия
Дмитрий Юрьевич Ковалев
142432, Московская обл., г. Черноголовка, ул. Академика Осипьяна, д. 8
В. И. Пономарев
Россия
Василий Иванович Пономарев
142432, Московская обл., г. Черноголовка, ул. Академика Осипьяна, д. 8
М. И. Алымов
Россия
Михаил Иванович Алымов
142432, Московская обл., г. Черноголовка, ул. Академика Осипьяна, д. 8
Список литературы
1. Merzhanov A. G., Borovinskaya I. P. SHS of refractory inorganic compounds / Dokl. AN SSSR. 1972. Vol. 204. N 2. P. 366 – 369 [in Russian].
2. Baru S. E., Proviz G. I., Savinov G. A., et al. One-coordinate for Rapid Multisnap Recording of X-ray Pictures / Nuclear Instruments and Methods. 1978. Vol. 152. P. 195 – 197. DOI: 10.1016/0029-554X(78)90264-1
3. Baru S. E., Proviz G. I., Savinov G. A., et al. Two-coordinate X-ray Detector / Nuclear Instruments and Methods. 1983. Vol. 208. P. 445 – 447. DOI: 10.1016/0167-5087(83)91167-5
4. Aulchenko V. M., Feldman I. G., Khabakhpashev A. G., et al. One-coordinate X-ray Detector OD-2 / Nuclear Instruments and Methods in Physics Research A. 1987. Vol. 261. P. 78 – 81. DOI: 10.1016/0168-9002(87)90568-7
5. Boldyrev V. V., Aleksandrov V. V., Korchagin M. A., et al. Dynamics of phase formation during combustion synthesis of NiAl / Dokl. AN SSSR. 1981. Vol. 259. N 5. P. 1127 – 1129 [in Russian].
6. Aleksandrov V. V., Korchagin M. A., Tolochko B. P., et al. Self-propagating high-temperature synthesis by the method of X-ray diffraction analysis using synchrotron radiation / Combustion, Explosion, and Shock Waves. 1983. N 4. P. 430 – 231. DOI: 10.1007/BF00783640
7. Boldyrev V. V., Lyakhov N. Z., Tolochko B. P. Diffractometry on Synchrotron Radiation. — Novosibirsk: Nauka, 1989 [in Russian].
8. Wong J., Larson E., Holt J., et al. Time resolved X-ray diffraction study of solid combustion reactions / Science. 1990. Vol. 249. P. 1406 – 1409. DOI: 10.1126/science.249.4975.1406
9. Lars E., Wong J., Holt J. A time-resolved diffraction study of the Ta-C solid combustion system / J. Mater. Res. 1993. Vol. 8. N 7. P. 1533 – 1541. DOI: 10.1557/JMR.1993.1533
10. Javel J., Dirandh M., Kuntz J., et al. Real time X-ray diffraction study of the formation by SHS of the phases γ’ and H in the ternary system Al-Ni-Ti / Journal of Alloys and Compounds. 1997. Vol. 247. P. 72 – 81. DOI: 10.1016/S0925-8388(96)02592-3
11. Merzhanov A. G., Borovinskaya I. P., Khomenko I. O., et al. Dynamics of phase formation during SHS / Ann. Chim. 1995. Vol. 20. P. 123 – 138 [in Russian].
12. Chermukina G. A., Chernenko S. P., Ivanov A. B., et al. Automatized one-dimensional X-ray detector / Isotopenpraxis. GDR. 1990. N 2. P. 547 – 549.
13. Khomenko I. O., Ponomarev V. I., Borovinskaya I. P. Peculiarities of the Time-Resolved X-ray Diffraction Applied to the Study of Phase-Forming Processes in an SHS-wave / International Journal of Self-Propagating High-Temperature Synthesis. 1994. Vol. 3. N 2. P. 117 – 121.
14. Ponomarev V. I., Khomenko I. O., Merzhanov A. G. Laboratory-scale setup for time-resolved XRD / Kristallografiya. 1995. Vol. 40. N 1. P. 14 – 17 [in Russian].
15. Merzhanov A. G., Borovinskaya I. P., Khomenko I. O., et al. Dynamics of Phase Formation During SHS / International Journal of Self-Propagating High-Temperature Synthesis. 1995. Vol. 20. P. 123 – 138.
16. Khomenko I. O., Mukasyan A. S., Ponomarev V. I., et al. Dynamics of phase formation during combustion in metal-gas systems / Dokl. RAN. 1992. Vol. 326. N 4. P. 763 – 677 [in Russian].
17. Khomenko I. O., Mukasyan A. S., Ponomarev V. I., et al. Dynamic of phase forming processes in the combustion of metal – gas system / Combustion and Flame. 1993. Vol. 92. P. 201 – 208. DOI: 10.1016/0010-2180(93)90032-X
18. Kovalev D. Yu., Shkiro V. M., Ponomarev V. I. Dynamics of phase formation during combustion of Zr and Hf in air / International Journal of Self-Propagation Synthesis. 2007. Vol. 16. N 4. P. 169 – 174.
19. Ratnikov V. I., Borovinskaya I. P., Prokudina V. K. SHS Hydrogenation and following Dehydrogenation of Titanium Sponge / International Journal of Self-Propagating High-Temperature Synthesis. 2006. Vol. 15. N 2. P. 193 – 197.
20. Prokudina V. K., Kovalev D. Yu., Ratnikov V. I., et al. SHS hydrogenation of titanium: Some structural and kinetic features / International Journal of Self-Propagating High-Temperature Synthesis. 2013. Vol. 22. N 2. P. 114 – 118. DOI: 10.3103/S1061386213020064
21. Kovalev D. Yu., Sytschev A. E., Kovalev I. D., et al. SHS Hydrogenation of Group IV Metals as Studied by Time-Resolved XRD / International Journal of Self-Propagating High-Temperature Synthesis. 2014. Vol. 23. N 4. P. 197 – 201. DOI: 10.3103/S1061386214040062
22. Kovalev D. Yu., Prokudina V. K., Ratnikov V. I., et al. Thermal Decomposition of TiH2: TRXRD study / International Journal of Self-Propagation Synthesis. 2010. Vol. 19. N 4. P. 253 – 257. DOI: 10.3103/S1061386210040047
23. Merzhanov A. G., Kovalev D. Yu., Shkiro V. M., et al. Phase formation in the Ti-B system / International Journal of Self-Propagating High-Temperature Synthesis. 2005. Vol. 14. N 4. P. 337 – 344.
24. Kovalev D. Yu., Shkiro V. M., Ponomarev V. I., et al. Dynamics of phase formation during SHS of the Ti-C-B systems / International Journal of Self-Propagating High-Temperature Synthesis. 2002. Vol. 11. N 4. P. 307 – 311.
25. Kovalev D. Yu., Shkiro V. M., Ponomarev V. I., et al. The dynamics of phase formation in the Ti-xB(C) system at its combustion under nitrogen and air / International Journal of Self-Propagating High-Temperature Synthesis. 2001. Vol. 10. N 3. P. 331 – 344.
26. Ponomarev V. I., Kovalev D. Yu. Time-resolved X-ray Diffraction during Combustion in the Ti-C-B System / International Journal of Self-Propagation Synthesis. 2005. Vol. 14. N 2. P. 111 – 117.
27. Rogachev A., Khomenko I., Varma A., et al. Mechanism of Self-Propagating High-Temperature Synthesis of Nickel Aluminides (part 2): Crystal Structure Formation in Combustion Wave / International Journal of Self-Propagating High-Temperature Synthesis. 1994. Vol. 3. N 3. P. 239 – 251.
28. Ponomarev V. I., Kovalev I. D., Kovalev D. Yu., et al. SHS in the Ni – Al system: A TRXRD study of product patterning / International Journal of Self-Propagating High-Temperature Synthesis. 2014. Vol. 23. N 2. P. 101 – 105. DOI: 10.3103/S1061386214020095
29. Mukasyan A., White J., Kovalev D., et al. Dynamics of phase transformation during thermal explosion in the Al-Ni system: Influence of mechanical activation / Physica B. 2010. Vol. 405. N 2. P. 778 – 784. DOI: 10.1016/j.physb.2009.10.001
30. Kovalev D. Yu., Kochetov N. A., Ponomarev V. I., et al. Effect of mechanical activation on thermal explosion in Ni – Al mixtures / International Journal of Self-Propagating High-Temperature Synthesis. 2010. Vol. 19. N 2. P. 120 – 125. DOI: 10.3103/S106138621002007X
31. Kochetov N. A., Kovalev I. D. SHS reactions in Ni – Al foils: a time-resolved XRD study / International Journal of Self-Propagating High-Temperature Synthesis. 2014. Vol. 23. N 1. P. 55 – 57. DOI: 10.3103/S1061386214010063
32. Barinov V. Y., Kovalev D. Y., Vadchenko S. G., et al. Direct Conversion of Chemical Energy into Electrical Energy in the Combustion of a Thin Three-Layer Charge / Combustion, Explosion and Shock Waves. 2019. Vol. 55. P. 678 – 685. DOI: 10.1134/S0010508219060078
33. Kovalev D. Yu., Ponomarev V. I., Zozulya V. D. Dynamics of phase transitions in the SHS of a 3Cu-Al powder mixture in the regime of thermal explosion / Combustion, Explosion and Shock Waves. 2001. Vol. 37. P. 673 – 677. DOI: 10.1023/A:1012932231553
34. Pismenskay E. B., Rogachev A. S., Kovalev D. Y., et al. Mechanism of formation of copper aluminides in thermal explosion mode / Tr. RAN. Khim. Ser. 2000. N 12. P. 1985 – 1990 [in Russian].
35. Kovalev D. Yu., Potanin A. Yu., Levashov E. A., et al. Phase formation dynamics upon thermal explosion synthesis of magnesium diboride / Ceramics International. 2016. Vol. 42. N 2. Part B. P. 2951 – 2959. DOI: 10.1016/j.ceramint.2015.10.078
36. Potanin A. Yu., Levashov E. A., Kovalev D. Yu. Dynamics of phase formation during the synthesis of magnesium diboride from elements in thermal explosion mode / Russ. J. Non-ferrous Metals. 2017. Vol. 58. N 4. P. 396 – 404. DOI: 10.3103/S1067821217040150
37. Potanin A. Y., Kovalev D. Yu., Levashov E. A., et al. The features of combustion synthesis of aluminum and carbon doped magnesium diboride / Physica C: Superconductivity and its Applications. 2017. Vol. 541. P. 1 – 9. DOI: 10.1016/j.physc.2017.07.007
38. Andreev D. E., Sanin V. N., Yukhvid V. I., et al. Regular features of combustion of CaO2/Al/Ti/Cr/B hybrid mixtures / Combustion, Explosion, and Shock Waves. 2011. Vol. 47. N 6. P. 671 – 676. DOI: 10.1134/S0010508211060074
39. Grigoryan A. E., Elistratov N. G., Kovalev D. Yu., et al. Autowave propagation of exothermic reactions in Ti-Al thin multilayer films / Dokl. Physic. Chem. 2001. Vol. 381. P. 283 – 287. DOI: 10.1023/A:1012952211911
40. Rogachev A. S., Gachon J. C., Grigoryan H. E., et al. Formation of the crystal structure of products during heterogeneous reaction in multilayer bimetallic nanosystems / Tr. RAN. Ser. Fiz.. 2006. Vol. 70. N 4. P. 609 – 611 [in Russian].
41. Gachon J. C., Rogachev A. S., Grigoryan H. E., et al. On the mechanism of heterogeneous reaction and phase formation in Ti/Al multilayer nanofilms / Acta Materialia. 2005. Vol. 53. P. 1225 – 1231. DOI: 10.1016/j.actamat.2004.11.016
42. Kovalev D. Yu., Luginina M. A., Vadchenko S. G., et al. Synthesis of a new MAX phase in the Ti-Zr-Al-C system / Mendeleev Communications. 2017. Vol. 27. N 1. P. 59 – 60. DOI: 10.1016/j.mencom.2017.01.018
43. Bazhin P. M., Kovalev D. Yu., Luginina M. A., et al. Combustion of Ti-Al-C compacts in air and helium: a TRXRD Study / International Journal of Self-Propagating High-Temperature Synthesis. 2016. Vol. 25. N 1. P. 30 – 34. DOI: 10.3103/S1061386216010027
44. Kovalev D. Yu., Averichev O. A., Luginina M. A., et al. Phase formation in the Ti-Al-C system during SHS / Russian Journal of Non-Ferrous Metals. 2019. Vol. 60. N 1. P. 61 – 67. DOI: 10.3103/S1067821219010073
45. Vadchenko S. G., Sytschev A. E., Kovalev D. Yu., et al. SHS of MAX compounds in the Ti-Si-C system: influence of mechanical activation / International Journal of Self-Propagating High-Temperature Synthesis. 2014. Vol. 23. N 3. P. 141 – 144. DOI: 10.3103/S106138621403011X
46. Konovalikhin S. V., Kovalev D. Yu., Sytschev A. E., et al. Formation of nanolaminate structures in the Ti-Si-C system: a crystallochemical study / International Journal of Self-Propagating High-Temperature Synthesis. 2014. Vol. 23. N 4. P. 217 – 221. DOI: 10.3103/S1061386214040049
47. Vadchenko S. G., Sytschev A. E., Kovalev D. Yu., et al. Self-propagating high-temperature synthesis in the Ti-Si-C system: features of product patterning / Nanotechnologies in Russia. 2015. Vol. 10. P. 67 – 74. DOI: 10.1134/S1995078015010206
48. Kovalev D. Yu., Luginina M. A., Vadchenko S. G. SHS in Zr-Al-C System: a time-resolved XRD study / International Journal of Self-Propagating High-Temperature Synthesis. 2016. Vol. 25. N 3. P. 149 – 154. DOI: 10.3103/S1061386216030055
49. Vadchenko S. G., Kovalev D. Yu., Luginina M. A. Ignition and phase formation in the Zr-Al-C system / Combustion, Explosion and Shock Waves. 2017. Vol. 53. N 2. P. 171 – 175. DOI: 10.1134/S0010508217020071
50. Kovalev D. Yu., Luginina M. A., Vadchenko S. G. X-ray diffraction study of self-propagating high-temperature synthesis in the Zr-Al-C system / Russian Journal of Inorganic Chemistry. 2017. Vol. 62. N 12. P. 1638 – 1644. DOI: 10.1134/S0036023617120117
51. Vorotilo S., Potanin A., Pogozhev Yu., et al. Self-propagating high-temperature synthesis of advanced ceramic MoSi2-HfB2-MoB / Ceramics International. 2019. Vol. 45. P. 96 – 107. DOI: 10.1016/j.ceramint.2018.09.138
52. Potanin A. Yu., Levashov E. A., Pogozhev Yu. S., et al. The features of combustion and structure formation of ceramic materials in the TiC-Ti3POx-CaO system / Ceramics International. 2015. Vol. 41. P. 8177 – 8185. DOI: 10.1016/j.ceramint.2015.03.036
53. Sytschev A., Kovalev D., Vrel D., et al. Combustion synthesis in the Ni – Al-Nb ternary system: a Time-Resolved X-ray Diffraction study / Results in Physics. 2017. Vol. 7. P. 1878 – 1882. DOI: 10.1016/j.rinp.2017.05.030
54. Vorotilo S., Levashov E., Petrzhik M., et al. Combustion synthesis of ZrB2-TaB2-TaSi2 ceramics with microgradient grain structure and improved mechanical properties / Ceramics International. 2019. Vol. 45. N 2. Part A. P. 1503 – 1512. DOI: 10.1016/j.ceramint.2018.10.020
55. Ignatev A. N., Shiriaeva M. Y., Kovalev D. Yu., et al. Dynamics of phase and chemical transformations in the combustion wave of the termite composition NiO/Ni/Al / International Journal of Self-Propagating High-Temperature Synthesis. 2005. Vol. 14. N 1. P. 41 – 53.
56. Radishevskaya N. I., Nazarova A. Y., Lvov O. V., et al. Self-propagating high-temperature synthesis of MgAl2O4 spinel / Inorganic Materials. 2020. Vol. 56. P. 142 – 150. DOI: 10.1134/S0020168520010112
57. Potanin A. Yu., Kovalev D. Yu., Pogozhev Yu. S., et al. Metal-doped MgB2 by thermal explosion: a TRXRD study / International Journal of Self-Propagating High-Temperature Synthesis. 2018. Vol. 27. N 1. P. 18 – 25. DOI: 10.3103/S1061386218010065
58. Patsera E. I., Levashov E. A., Kurbatkina V. V., et al. Production of ultra-high temperature carbide (Ta, Zr)C by self-propagating high-temperature synthesis of mechanically activated mixtures / Ceramics International. 2015. Vol. 41. P. 8885 – 8893. DOI: 10.1016/j.ceramint.2015.03.146
59. Levashov E. A., Pogozhev Yu. S., Potanin A. Yu., et al. Combustion features in the Mo-Si-B system. Part 1. Mechanism and kinetics / Izv. Vuzov. Poroshk. Metallurg. Funkts. Pokryt. 2013. N 4. P. 19 – 31 [in Russian]. DOI: 10.17073/1997-308X-2013-4-19-31
60. Levashov E. A., Pogozhev Yu. S., Potanin A. Yu., et al. Self-propagating high-temperature synthesis of advanced ceramics in the Mo-Si-B system: Kinetics and mechanism of combustion and structure formation / Ceramics International. 2014. Vol. 40. P. 6541 – 6552. DOI: 10.1016/j.ceramint.2013.11.107
61. Potanin A. Yu., Pogozhev Yu. S., Levashov E. A., et al. Features of structural and phase transformations in Mo-Si-B and Cr-Al-Si-B systems during self-propagating high-temperature synthesis / Eurasian Chemico Technological Journal. 2014. Vol. 16. P. 53 – 58. DOI: 10.18321/ectj169
62. Iatsyuk I. V., Pogozhev Yu. S., Levashov E. A., et al. Combustion synthesis of high-temperature ZrB2-SiC ceramics / Journal of the European Ceramic Society. 2018. Vol. 38. N 7. P. 2792 – 2801. DOI: 10.1016/j.jeurceramsoc.2018.02.016
63. Pogozhev Yu. S., Potanin A. Yu., Levashov E. A., et al. SHS of TiC-TiNi composites: effect of initial temperature and nanosized refractory additives / International Journal of Self-Propagating High-Temperature Synthesis. 2012. Vol. 21. N 4. P. 202 – 211. DOI: 10.3103/S1061386212040036
64. Pogozhev Yu. S., Iatsyuk I. V., Potanin A. Yu., et al. The kinetics and mechanism of combusted Zr-B-Si mixtures and the structural features of ceramics based on zirconium boride and silicide / Ceramics International. 2016. Vol. 42. P. 16758 – 16765. DOI: 10.1016/j.ceramint.2016.07.157
65. Iatsyuk I. V., Pogozhev Yu. S., Levashov E. A., et al. Features of production and high-temperature oxidation of SHS ceramics based on zirconium boride and zirconium silicide / Russ. J. Non-ferrous Metals. 2018. Vol. 59. P. 311 – 322. DOI: 10.3103/S1067821218030173
66. Potanin A. Yu., Zvyagintseva N. V., Pogozhev Yu. S., et al. Silicon carbide ceramics SHS-produced from mechanoactivated Si-C-B mixtures / International Journal of Self-Propagating High-Temperature Synthesis. 2015. Vol. 24. N 3. P. 119 – 127. DOI: 10.3103/S1061386215030085
67. Pogozhev Yu. S., Potanin A. Yu., Levashov E. A., et al. The features of combustion and structure formation of ceramic materials in the Cr-Al-Si-B system / Ceramics International. 2014. Vol. 40. P. 16299 – 16308. DOI: 10.1016/j.ceramint.2014.07.068
68. Pogozhev Yu. S., Potanin A. Yu., Levashov E. A., et al. Peculiarities of Burning and Structurization of Ceramic Materials in the System Cr-Al-Si-B / Izv. Vuzov. Poroshk. Metallurg. Funkts. Pokryt. 2014. N 4. P. 19 – 29 [in Russian]. DOI: 10.17073/1997-308X-2014-4-19-29
69. Kovalev D. Yu., Konstantinov A. S., Konovalikhin S. V., et al. Phase Formation in the SHS of a Ti-B Mixture with the Addition of Si3N4 / Combustion, Explosion, and Shock Waves. 2020. Vol. 56. N 6. P. 648 – 654. DOI: 10.1134/S0010508220060040
70. Potanin A. Yu., Astapov A. N., Rupasov S. I., et al. Structure and properties of MoSi2-MeB2-SiC (Me = Zr, Hf) ceramics produced by combination of SHS and HP techniques / Ceramics International. 2020. Vol. 46. Issue 18. Part A. P. 28725 – 28734. DOI: 10.1016/j.ceramint.2020.08.033
71. Sharafutdinov M., Alexandrov V., Evdokov O., et al. The study of Ni + Al self-propagating high-temperature synthesis using synchrotron radiation and a two-dimensional DED-5 detector / J. Synch. Rad. 2003. Vol. 10. P. 384 – 386. DOI: 10.1107/S0909049503017229
72. Curfs C., Turrillas X., Vaughan G., et al. Al-Ni intermetallics obtained by SHS: a time resolved X-ray diffraction study / Intermetallics. 2007. Vol. 15. N 9. P. 1163 – 1171. DOI: 10.1016/j.intermet.2007.02.007
73. Mikhailov Yu. M., Aleshin V. V., Kolesnikova A. M., et al. Formation of nanosized particles of nickel and silver in a wave of flameless combustion of cellulose nitrate in ballasted systems / Dokl. Fiz. Khim. 2014. Vol. 458. N 1. P. 133 – 137 [in Russian]. DOI: 10.1134/S0012501614090024
74. Mikhailov Yu. M., Aleshin V. V., Kolesnikova A. M., et al. Flameless combustion synthesis of Ni and Ag nanoparticles in ballasted systems: a time-resolved X-ray diffraction study / Propellants, Explosives, Pyrotechnics. 2015. Vol. 40. N 1. P. 88 – 94. DOI: 10.1002/prep.201400049
75. Mikhailov Yu. M., Aleshin V. V., Zhemchugova L. V., et al. The transformations of iron (III) precursors in wave of flameless combustion of RDX / International Journal of Self-Propagating High-Temperature Synthesis. 2018. Vol. 23. N 3. P. 162 – 166. DOI: 10.3103/S106138621803007X
76. Manukyan K., Cross A., Roslyakov S., et al. Solution combustion synthesis of nano-crystalline metallic materials: Mechanistic studies / J. of Physical Chemistry C. 2013. Vol. 117. P. 24417 – 24427. DOI: 10.1021/jp408260m
77. Varma A., Mukasyan A., Rogachev A., et al. Solution Combustion Synthesis of Nanoscale Materials / Chemical Reviews. 2016. Vol. 116. Issue 23. P. 14493 – 14586. DOI: 10.1021/acs.chemrev.6b00279
78. Roslyakov S. I., Kovalev D. Yu., Rogachev A. S., et al. Solution combustion synthesis: Dynamics of phase formation for highly porous nickel / Dokl. Fiz. Khim. 2013. Vol. 449. P. 48 – 51 [in Russian]. DOI: 10.1134/S0012501613030068
79. Cross A., Roslyakov S., Manukyan K., et al. In situ preparation of highly stable Ni-based supported catalysts by solution combustion synthesis / Journal of Physical Chemistry C. 2014. Vol. 118. P. 26191 – 26198. DOI: 10.1021/jp508546n
80. Xanthopoulou G., Thoda O., Roslyakov S., et al. Solution combustion synthesis of nano-catalysts with a hierarchical structure / Journal of Catalysis. 2018. Vol. 364. P. 112 – 124. DOI: 10.1016/j.jcat.2018.04.003
81. Yermekova Zh., Roslyakov S., Kovalev D. et al. One-step synthesis of pure γ-FeNi alloy by solution combustion synthesis: mechanism and properties / Journal of Sol-Gel Science and Technology. 2020. Vol. 94. P. 310 – 321. DOI: 10.1007/s10971-020-05252-9
82. Kovalev D. Yu., Shkodich N. F., Vadchenko S. G., et al. Influence of the preparation method on amorphous-crystalline transition in Fe84B16 alloy / Technical Physics. 2019. Vol. 64. N 12. P. 1808 – 1813. DOI: 10.1134/S1063784219120119
83. Kovalev D. Yu., Vadchenko S. G., Rogachev A. S., et al. Time resolved X-ray diffraction study of the transition of an amorphous TiCu alloy to the crystalline state / Dokl. Fiz. 2017. Vol. 62. N 3. P. 111 – 114 [in Russian]. DOI: 10.1134/S1028335817030028
84. Kovalev D. Yu., Vadchenko S. G., Shkodich N. F., et al. Crystallization of a mechanically activated CuTi alloy / Dokl. Fiz. 2018. Vol. 63. N 2. P. 45 – 49 [in Russian]. DOI: 10.1134/S1028335818020064
85. Rogachev A. S., Vadchenko S. G., Aronin A. S., et al. Self-sustained exothermal waves in amorphous and nanocrystalline films: A comparative study / Journal of Alloys and Compounds. 2018. Vol. 749. P. 44 – 51. DOI: 10.1016/j.jallcom.2018.03.255
86. Shkodich N. F., Vadchenko S. G., Nepapushev A. A., et al. Crystallization of amorphous Cu50Ti50 alloy prepared by high-energy ball milling / Journal of Alloys and Compounds. 2018. Vol. 741. P. 575 – 579. DOI: 10.1016/j.jallcom.2018.01.062
Рецензия
Для цитирования:
Ковалев Д.Ю., Пономарев В.И., Алымов М.И. Исследование in situ процессов горения гетерогенных сред методом динамической рентгенографии. Заводская лаборатория. Диагностика материалов. 2022;88(1(I)):49-61. https://doi.org/10.26896/1028-6861-2022-88-1-I-49-61
For citation:
Kovalev D.Yu., Ponomarev V.I., Alymov M.I. In situ study of heterogeneous media combustion processes by time Resolved XRD. Industrial laboratory. Diagnostics of materials. 2022;88(1(I)):49-61. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-1-I-49-61