

Evaluation of the residual strength of composite products based on the structural-phenomenological concept of damage and acoustic-emission diagnostics
https://doi.org/10.26896/1028-6861-2022-88-1-I-69-81
Abstract
A structural-phenomenological concept (SPhC) of monitoring the residual strength of composite materials is proposed. SFK was developed taking into account the kinetics of damage and destruction of polymer composite material (PCM) at the micro-, meso- and macroscale levels, which generate acoustic emission pulses (AE) recorded by the receiving transducers of the antenna array. A correspondence between the ongoing destruction of the composite material structure at the micro-, meso- and macroscale level and the AE pulses recorded at the same time and their weight content provides the possibility of monitoring of the damage kinetics in the loading mode at all structural levels, and, consequently, the possibility of control of the residual strength of the product. An algorithm and software have been developed that made it possible to divide the recorded AE signals into the clusters of lower, middle and upper energy levels corresponding to micro-, meso- and macroscale disruptions of the structure of a composite material, calculate the AE activity and the weight content of location pulses in energy clusters, thus displaying the dynamics of their changes every second. Comparison of the current values of the most informative parameters of the weight content of location pulses in energy clusters with the threshold values recorded during the destruction of the material provides monitoring of the residual strength of the product in the loading mode. The validity of the developed concept, algorithm and software was proved during tests of elementary and structurally similar samples of PCM under different loading conditions. An example of using the developed technique for revealing the areas of the most intense damage accumulation in a MS-21 fuselage panel at a stepwise increase in the compressive load is presented. In addition to the possibility of identification of the area of intensive accumulation of damage and failure of the structure of the composite material, SPhC of the AE diagnostics provides also the possibility of tracing the damage kinetics at different scale-structural levels, controlling the level of the residual strength of the panel upon the stepwise compression.
About the Authors
Yu. G. MatvienkoRussian Federation
Yury G. Matvienko
4, Malyi Kharitonyevsky per., Moscow, 101990
N. A. Makhutov
Russian Federation
Nikolay A. Makhutov
4, Malyi Kharitonyevsky per., Moscow, 101990
I. E. Vasil’ev
Russian Federation
Igor E. Vasil’ev
4, Malyi Kharitonyevsky per., Moscow, 101990
D. V. Chernov
Russian Federation
Dmitry V. Chernov
4, Malyi Kharitonyevsky per., Moscow, 101990
V. I. Ivanov
Russian Federation
Valery I. Ivanov
35-1, ul. Usacheva, Moscow, 119048
S. V. Elizarov
Russian Federation
Sergey. V. Elizarov
20b, sh. Éntuziastov, Moscow, 111024
References
1. Rabotnov Yu. N. Creep of structural elements. 2-nd edition. — Moscow: Nauka, 2014. — 752 p. [in Russian].
2. Matvienko Yu. G. Models and Criteria of Fracture Mechanics. — Moscow: Fizmatlit, 2006. — 328 p. [in Russian].
3. Kukudzhanov V. N. Numerical continuum mechanics. — Berlin: De Gruyter, 2021. — 425 p.
4. Murakami S. Continuum damage mechanics: A continuum mechanics approach to the analysis of damage and fracture. — Dordrecht: Springer, 2012. — 402 p.
5. Czichos H. Handbook of technical diagnostics. — Berlin – Heidelberg: Springer Verlag, 2013. — 560 p. DOI: 10.1007/978-3-642-25850-3
6. Cherepanov G. P. Invariant Integrals in Physics. — Cham: Springer, 2019. — 259 p. DOI: 10.1007/978-3-030 – 28337-7
7. Panin V. E., Egorushkin V. E., Panin A. V. Nonlinear wave processes in a deformable solid as in a multiscale hierarchically organized system / Usp. Fiz. Nauk. 2012. Vol. 55. N 12. P. 1260 – 1267 [in Russian]. DOI: 10.3367/VFNr.0182.201212i.1351
8. Egorushkin V. E., Panin V. E., Panin A. V. The physical nature of plasticity / Fiz. Mezomekh. 2020. Vol. 23. N 2. P. 5 – 14 [in Russian]. DOI: 10.24411/1683-805X-2020-12001
9. Xiao-Su Yi, Shanyi Du, Litong Zhang. Composite Materials Engineering: Fundamentals of Composite Materials. Vol. 1. — Singapore: Springer, 2017. — 786 p.
10. Polilov A. N. Experimental mechanics of composites. — Moscow: Izd. MGTU N. É. Baumana, 2016. — 375 p. [in Russian].
11. Oleinikov A. I., Kuzmina T. A. The in situ ply elasticity and strength in laminated composites / Inzh. Zh. Nauka Innov. 2020. N 7. P. 4 – 14 [in Russian]. DOI: 10.18698/2308-6033-2020-7-1996
12. Ono K., Gallego A. Research and Applications of AE on Advanced Composites / Journal of acoustic emission. 2012. Vol. 30. P. 180 – 230.
13. Sause M. G. R. In situ Monitoring of Fiber-Reinforced Composites. — Cham: Springer, 2016. — 242 p. DOI: 10.1007/978-3-319-30954-5
14. Matvienko Yu. G., Vasil’ev I. E., Chernov D. V. The kinetics of failure structural bonds of the unidirectional laminate by use of acoustic emission and video recording / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 11. P. 45 – 61 [in Russian]. DOI: 10.1134/S0020168520150145
15. Matvienko Yu. G., Vasil’ev I. E., Chernov D. V., and Elizarov S. V. Criterion parameters for assessing degradation of composite materials by acoustic emission testing / Russian Journal of Nondestructive Testing. 2018. Vol. 54. N 12. P. 811 – 819. DOI: 10.1134/S1061830918120070
16. Matvienko Y. G., Vasil’ev I. E., Chernov D. V. Damage and failure of unidirectional laminate by acoustic emission combined with video recording / Acta Mechanica. 2021. Vol. 232. P. 1889 – 1900. DOI: 10.1007/s00707-020-02866-6
17. Ivanov V. I., Barat V. A. Acoustic emission diagnostic. — Moscow: Spektr, 2017. — 368 p. [in Russian].
18. Bigus G. A., Daniev Yu. F., Bystrova N. A., Galkin D. I. Fundamentals of diagnostics of technical devices and structures — Moscow: Izd. MGTU N. É. Baumana, 2015. — 445 p. [in Russian].
19. Matvienko Yu. G., Vasil’ev I. E., Chernov D. V. Application of acoustic emission and video recording for monitoring the kinetics of damage during compression of composite specimens / Zavod. Lab. Diagn. Mater. 2021. Vol. 87. N 4. P. 45 – 61 [in Russian]. DOI: 10.26896/1028-6861-2021-87-4-61-70
20. Matvienko Y. G., Vasil’ev I. E., Ivanov V. I., Elizarov S. V. Acoustic-emission evaluation of the process of destruction of a composite material under tensile, compression, and cyclic loads / Russian journal of nondestructive testing. 2016. Vol. 52. N 8. P. 443 – 456. DOI: 10.1134/S1061830916080076
21. Matvienko Y. G., Vasil’ev I. E., Chernov D. V., Pankov A. V. Acoustic-Emission Monitoring of Airframe Failure under Cyclic Loading / Russian Journal of Nondestructive Testing. 2019. Vol. 55. N 8. P. 570 – 580. DOI: 10.1134/S1061830919080084
22. Vasil’ev I. E., Matvienko Yu. G., Chernov D. V., Elizarov S. V. Monitoring of damage accumulation in caissonof the planer MS-21 using acoustic emission / Probl. Mashinostr. Avtom. 2020. N 2. P. 118 – 141 [in Russian].
23. Matvienko Yu. G., Vasil’ev I. E., Chernov D. V. Diagnostics of destruction and damage by the acoustic emission method / Priv. Kompon. Mashin. 2018. N 5. P. 13 – 18 [in Russian].
24. Makhutov N. A., Vasiliev I. E., Chernov D. V, Ivanov V. I. and Terent’ev E. V. Kinetics of Damage Accumulation and Failure in the Zones of Stress Raisers in Sample Rupture Tests / Russian Journal of Nondestructive Testing. 2021. Vol. 57. N 1. P. 31 – 42. DOI: 10.1134/S1061830921010095
Review
For citations:
Matvienko Yu.G., Makhutov N.A., Vasil’ev I.E., Chernov D.V., Ivanov V.I., Elizarov S.V. Evaluation of the residual strength of composite products based on the structural-phenomenological concept of damage and acoustic-emission diagnostics. Industrial laboratory. Diagnostics of materials. 2022;88(1(I)):69-81. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-1-I-69-81