Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the structure and properties of protective coatings obtained by the method of electric spark alloying with SHS electrodes (review)

https://doi.org/10.26896/1028-6861-2022-88-2-40-48

Abstract

Electric spark alloying (ESA) is a traditional method of obtaining protective coatings on the working surfaces of parts and mechanisms. A review of the results of studying the structure and properties of protective coatings obtained by the ESA method using SHS-electrodes is presented. Ceramic and cermet electrodes are obtained by the method of SHS-extrusion carried out under conditions of combustion processes with high-temperature shear deformation. SHS extrusion makes it possible to obtain electrodes with desired structure and properties in tens of seconds in one technological stage. The results on the study and application of electrode materials made of hard alloy materials, intermetallic compounds, materials based on the MAX-phase and ceramic materials with a nanoscale structure are presented. Analysis of the microstructure and properties of the formed alloy layers showed that the protective coating consists of at least two zones. The sizes of the structural wear-resistant components on the coating surface, usually correspond to their sizes in the original electrodes. When going in depth to the substrate, the grain size decreases and amounts to 20 – 100 nm. It is shown that a protective coating is formed on the surface which increases the mechanical and tribological properties. The presented results can be used in comparative tribological tests of hardened coatings, industrial tests of machined parts, etc.

About the Authors

M. I. Alymov
A. G. Merzhanov Institute of Structural Macrokinetics and Materials Science, RAS
Russian Federation

Mikhail I. Alymov

8, ul. Akademika Osipyana, Chernogolovka, Moskovskaya obl., 142432



A. M. Stolin
A. G. Merzhanov Institute of Structural Macrokinetics and Materials Science, RAS
Russian Federation

Alexander M. Stolin

8, ul. Akademika Osipyana, Chernogolovka, Moskovskaya obl., 142432



P. M. Bazhin
A. G. Merzhanov Institute of Structural Macrokinetics and Materials Science, RAS
Russian Federation

Pavel M. Bazhin

8, ul. Akademika Osipyana, Chernogolovka, Moskovskaya obl., 142432



References

1. Chernoivanov V. I., Golubev I. G. Restoration of machine parts (State and prospects). — Moscow: Rosinformagrotekh, 2010. — 376 p. [in Russian].

2. Bayhan Y. Reduction of wear via hardfacing of chisel ploughshare / Tribol. Int. 2006. Vol. 39. N 6. DOI: 10.1016/j.triboint.2005.06.005

3. Stolin A. M., Bazhin P. M., Mikheyev M. V., et al. Deposition of protective coatings by electric arc cladding with SHS electrodes / Weld. Int. 2015. Vol. 29. N 8. DOI: 10.1080/09507116.2014.960703

4. Guerrieri M., Fedrizzi M., Antonucci F., et al. An innovative multivariate tool for fuel consumption and costs estimation of agricultural operations / Spanish J. Agricult. Res. 2016. Vol. 14. Issue 4. N e0209. DOI: 10.5424/sjar/2016144-9490

5. Titov N. V., Kolomeichenko A. V., Logachev V. N., et al. Investigation of the hardness and wear resistance of working sections of machines hardened by vibroarc surfacing using cermet materials / Weld. Int. 2015. Vol. 29. N 9. DOI: 10.1080/09507116.2014.970336

6. Kiryukhantsev-Korneev P. V., Pierson J. F., Bychkova M. Y., et al. Comparative Study of Sliding, Scratching, and Impact-Loading Behavior of Hard CrB2 and Cr – B – N Films / Tribol. Let. 2016. Vol. 63. Issue 3. N 44. DOI: 10.1007/s11249-016-0729-0

7. Vardanyan E. L., Ramazanov K. N., Nagimov R. S., et al. Properties of intermetallic TiAl based coatings deposited on ultrafine grained martensitic steel / Surf. Coat. Technol. 2020. Vol. 389. N 125657. DOI: 10.1016/j.surfcoat.2020.125657

8. Ishkov A. V., Aulov V. F., Krivochurov N. G., et al. Combined hardening coatings for working bodies of modern tillage tools. — Barnaul, 2014 [in Russian].

9. Reut O. P., Khina B. B., Sarantsev V. V., Markova L. V. Application of self-propagating high-temperature synthesis and electric spark treatment for the application of composite coatings / Uprochn. Tekhnol. Pokryt. 2007. N 12. P. 49 – 56 [in Russian].

10. Verkhoturov A. D., Ivanov V. I., Dorokhov A. S., et al. Influence of the nature of electrode materials on erosion and properties of the alloyed layer. Criteria for evaluating the efficiency of electrospark alloying / Vestn. Mordov. Univ. 2018. Vol. 28. N 3. P. 302 – 320 [in Russian].

11. Ivanov V. I., Konevtsov L. A., Verkhoturov A. D. Effect of the physicochemical properties of refractory compounds and hard alloys on their erosion in electric spark alloying / Surf. Eng. Appl. Electrochem. 2019. Vol. 55. N 3. DOI: 10.3103/S1068375519030165

12. Ivanov V. I., Verkhoturov A. D., Konevtsov L. A. Methodological aspects of using electrospark alloying / Tekhn. Servis Mashin. 2019. N 2(135). P. 158 – 169 [in Russian].

13. Ivanov V. I., Verkhoturov A. D., Konevtsov L. A. On the methodology of hardening and restoration of the executive surfaces of machine parts, increasing the efficiency and evaluation criteria for ESA / Élektron. Obrab. Mater. 2018. Vol. 54(3). P. 7 – 14 [in Russian].

14. Verkhoturov A. D., Ivanov V. I., Konevtsov L. A. On the influence of the physicochemical properties of pure metals on their erosion during electrospark alloying / Tr. GOSNITI. 2016. Vol. 125. P. 202 – 215 [in Russian].

15. Boginsky L. S., Rud V. D., Zabolotny O. V., Sarancev V. V. Development of processes of dry isostatic pressing (SIP) of powder and wire compacted materials / Inzh. Mekh. 2007. N 20. P. 38 – 55 [in Russian].

16. Merzhanov A. G. Combustion Processes and Synthesis of Materials. — Chernogolovka: ISMAN, 1998. — 512 p. [in Russian].

17. Stolin A. M., Bazhin P. M. Manufacture of Multipurpose Composite and Ceramic Materials in the Combustion Regime and High-temperature Deformation (SHS Extrusion) / Theor. Found. Chem. Eng. 2014. Vol. 48. N 6. P. 751 – 763. DOI: 10.1134/S0040579514060104

18. Stolin A. M., Bazhin P. M. SHS Extrusion: An Overview / Int. J. SHS. 2014. Vol. 23. N 2. DOI: 10.3103/S1061386214020113

19. Kudryashov A. E., Doronin O. N., Levashov E. A., Krakht V. B. On the use of SHS-electrode materials for electric spark hardening of rolls of a hot rolling mill / Poroshk. Metallurg. Funkts. Pokryt. 2013. N 1. P. 64 – 72 [in Russian].

20. Kudryashov A. E., Zamulaeva E. I., Vakaev P. V., et al. Features of Forming TiC, NiAl, TiAl based coatings in the process of thermoreactive electrospark strengthening / Non-ferrous Met. 2003. N 1. P. 73 – 79.

21. Panteleenko F. I., Sarantsev V. V., Stolin A. M., et al. Creation of composite coatings based on titanium carbide by electrospark alloying / Élektron. Obrab. Met. 2011. N 4. P. 106 – 115 [in Russian].

22. Lazarenko B. R., Lazarenko N. I. Electrical erosion of metals. — Moscow – Leningrad: Gosénergoizdat, 1944. — 278 p. [in Russian].

23. Galinov I. V., Luban R. B., Pekker L. S. On physical processes in the interelectrode gap during electrospark alloying of metals / Élektron. Obrab. Mater. 1990. N 6. P. 11 – 13 [in Russian].

24. Bazhin P. M., Stolin A. M., Chizhikov A. P., et al. Structure, Properties, and Use of Protective Cermet Coatings Prepared by Electric-Spark Alloying and Electric-Arc Hardfacing / Refrac. Industr. Ceram. 2016. Vol. 57. N 4. DOI: 10.1007/s11148-016-9992-8

25. Bazhin P. M., Chizhikov A. P., Leybo D. V., et al. The research of structure and mechanical properties of superhard electro-spark coatings for hardwearing mining tools / IOP Conference Series: Materials Science and Engineering. 2016. Vol. 112. N 1. DOI: 10.1088/1757-899X/112/1/012021

26. Bazhin P. M., Stolin A. M., Zaripov N. G., Chizhikov A. P. Electrospark Coatings Produced by Ceramic Nanostructured SHS Electrode Materials / Surf. Eng. Appl. Electrochem. 2016. Vol. 52. N 3. DOI: 10.3103/S1068375516030030

27. Stelmakh L. S., Stolin A. S., Bazhin P. M. Grain size reduction in a TiC – Co material during SHS extrusion / Inorg. Mater. 2020. Vol. 56. N 7. DOI: 10.1134/S0020168520070158

28. Pazniak A., Bazhin P., Shchetininc I., et al. Dense Ti3AlC2 based materials obtained by SHS-extrusion and compression methods / Ceram. Int. 2019. Vol. 45. N 2. DOI: 10.1016/j.ceramint.2018.10.101

29. Bazhin P. M., Stelmakh L. S., Stolin A. M. Effect of Strain on the Formation of a MAX Phase in Ti – Al – C Materials during Self-Propagating High Temperature Synthesis and Extrusion / Inorg. Mater. 2019. Vol. 55. N 3. DOI: 10.1134/S0020168519030051

30. Shishkina T. N., Podlesov V. V., Stolin A. M. Microstructure and properties of extruded SHS-materials / J. Eng. Phys. Thermophys. 1993. Vol. 63. P. 547 – 557.

31. Bazhin P. M., Stolin A. M., Alymov M. I. Preparation of Nanostructured Composite Ceramic Materials and Products under Conditions of a Combination of Combustion and High-temperature Deformation (SHS Extrusion) / Nanotechnol. Russ. 2014. Vol. 9. N 11 – 12. DOI: 10.1134/S1995078014060020

32. Bazhin P. M., Stolin A. M., Baronin G. S., et al. Increasing the service life of the beet harvester knives by the method of electrospark alloying with SHS electrodes / Mater. Tekhnol. Instr. 2014. Vol. 19. N 1. P. 82 – 86 [in Russian].

33. Sheveleva T. A., Verkhoturov A. D., Nikolenko S. V., et al. The effect of datolite concentrate dopants in electrode materials TiC-Ni-Mo onto the properties of steels surface layer following electric spark doping / Electr. Mat. Proc. 1991. N 1(157). P. 26 – 30.


Review

For citations:


Alymov M.I., Stolin A.M., Bazhin P.M. Study of the structure and properties of protective coatings obtained by the method of electric spark alloying with SHS electrodes (review). Industrial laboratory. Diagnostics of materials. 2022;88(2):40-48. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-2-40-48

Views: 461


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)