

Resonant reflection of plane microwave electromagnetic waves by the linear dielectric-ring structures
https://doi.org/10.26896/1028-6861-2022-88-2-49-53
Abstract
Artificial materials with negative magnetic and dielectric permittivity have unique electrodynamic properties that are not present in natural materials. We present the results of studying of the main magnetic LC resonance induced by a plane electromagnetic wave of GHz range in the linear structures of subwavelength dielectric ring elements with a high relative permittivity. The dielectric constant of the ring material (capacitor ceramics) is 160. Resonant scattering on the main magnetic mode and wave properties of linear structures consisting of subwavelength dielectric elements in the form of flat thin rings were studied. A single ring or ring structures were arranged in such a way that the vectors of the electric and magnetic fields of a plane incident electromagnetic wave were parallel to the plane of the ring, whereas the wave vector was perpendicular to the plane of the ring. Linear structures consisting of two or three rings were oriented along the magnetic vector of the incident wave. The magnetic field probe was placed on the line of the axis of symmetry of the ring and structures relative to the wave vector at the side of the structures most distant from the antenna. The spectra of transmitted radiation were measured during resonant excitation of magnetic fields in a system of dielectric rings in the near (distance — 2 mm) and remote (distance — 30 mm) zones from the ring. It is shown that in the near wave zone, splitting of the resonant frequency occurs due to mutual inductance and interaction of the rings. As the number of rings increases, the number of additional peaks also increases. A bandwidth of ~200 MHz with an amplitude 25 dB greater than the amplitude of the incident electromagnetic wave in the specified spectrum appears between the split levels. In the far zone, the transmitted radiation at the resonance frequency for a single ring practically does not change due to the splitting of this resonance frequency due to the interaction of the rings in the structure. The results obtained can be used in the development of new materials.
About the Authors
L. M. VasilyakRussian Federation
Leonid M. Vasilyak
13, ul. Izhorskaya, Moscow, 125412
O. D. Volpyan
Russian Federation
Oleg D. Volpyan
45a, ul. M. Tulskaya, Moscow, 115191
A. I. Kuzmichev
Ukraine
Anatoly I. Kuzmichev
37, pr. Pobedy, Kiev, 03056
Yu. A. Obod
Russian Federation
Yury A. Obod
15, ul. Butlerova, Moscow, 117342
V. Ya. Pecherkin
Russian Federation
Vladimir Ya. Pecherkin
13, ul. Izhorskaya, Moscow, 125412
P. A. Privalov
Russian Federation
Petr A. Privalov
13, ul. Izhorskaya, Moscow, 125412
References
1. Vendik I. B., Vendik O. G. Metamaterials and their application in ultrahigh frequency engineering (review) / Tech. Phys. 2013. Vol. 58. P. 1. DOI: 10.1134/S1063784213010234
2. Veselago V. G. Waves in metamaterials: their role in modern physics / Phys. Usp. 2011. Vol. 54. N 11. P. 1161 – 1165. DOI: 10.3367/UFNe.0181.201111h.1201
3. Zhao Qian, Bo Du, Lei Kang, et al. Tunable Negative Permeability in an Isotropic Dielectric Composite / Appl. Phys. Lett. 2008. Vol. 92. N 5. P. 051106. DOI: 10.1063/1.2841811
4. Volpyan O. D., Krikunov A. I., Kuzmichev A. I., et al. Magnetron Sputtering System with Reactive Plasma Assisting for Deposition of TixZr1 – xO2 Coating Resistant to Laser Radiation / J. Phys. Conf. Ser. 2019. Vol. 1396. P. 012044. DOI: 10.1088/1742-6596/1396/1/012044
5. Volpyan O. D., Kuzmichev A. I., Churikov D. V. Ion-Vacuum Technology for Manufacturing Elements for Nanogradient Optics and Metamaterials / J. Phys. Conf. Ser. 2019. Vol. 1281. P. 012090. DOI: 10.1088/1742-6596/1281/1/012090
6. Bulatov M. F., Churikov D. V. On the Formation of Microheterogeneities in Epitaxial Films of Nonstoichiometric Ferrogarnets / J. Surface Investigation. 2019. Vol. 13. N 2. P. 206 – 209. DOI: 10.1134/S1027451019020046
7. Pozar D. M. Microwave Engineering. — Hoboken, NJ, USA: John Wiley & Sons, 2012.
8. Jahani S., Jacob Z. All — dielectric metamaterials / Nat. Nanotechnol. 2016. N 11. P. 23 – 36. DOI: 10.1038/nnano.2015.304
9. Verplanken M., Van-Bladel J. The electric dipole resonances of ring resonators of very high permittivity / IEEE Trans. Microwave Theory Technol. 1976. N 24. P. 108 – 112.
10. Miroshnichenko A., Kuznetsov A., Wei L., et al. Magnetic Light: Optical magnetism of dielectric nanoparticles / Optics Photonics News. 2012. Vol. 23. N 12. P. 35. DOI: 10.1364/opn.23.12.000035
11. Kuznetsov A. I., Miroshnichenko A. E., Brongersma M. L., et al. Optically resonant dielectric nanostructures / Science. 2016. Vol. 354. P. 2472. DOI: 10.1126/science.aag2472
12. Jelinek L., Marques R. Artificial magnetism and left-handed media from dielectric rings and rods / J. Phys. Condens. Matter. 2010. Vol. 22. P. 025902. DOI: 10.1088/0953-8984/22/2/025902
13. Shvartsburg A. B., Pecherkin V. Ya., Vasilyak L. M., et al. Resonant microwave fields and negative magnetic response induced by displacement currents in dielectric rings: theory and the first experiments / Sci. Rep. 2017. Vol. 7. P. 2180. DOI: 10.1038/s41598-017-02310-1
14. Staude I., Miroshnichenko A., Decker M., et al. Tailoring directional scattering through magnetic and electric resonances in sub wavelength silicon nanodiscs / ACS Nano. 2013. Vol. 7. P. 7824 – 7832. DOI: 10.1021/nn402736f
15. Kapitanova P., Ternovsky V., Miroshnichenko A., et al. Giant field enhancement in high-index dielectric sub wavelength particles / Sci. Rep. 2017. Vol. 7. N 1. P. 731. DOI: 10.1038/s41598-017-00724-5
16. Terekhov P. D., Evlyukhin A. B., Shalin A. S., et al. Polarization-dependent asymmetric light scattering by silicon nanopyramids and their multipoles resonances / J. Appl. Phys. 2019. Vol. 125. N 17. P. 173108. DOI: 10.1063/1.5094162
17. Geffrin J., García-Cámara B., Gómez-Medina R., et al. Magnetic and electric coherence in forward-and back-scattered electromagnetic waves by a single dielectric subwavelength sphere / Nat. Commun. 2012. Vol. 3. P. 1171. DOI: 10.1038/ncomms2167
18. Yang Y., Kravchenko I., Briggs D., Valentine J. All-dielectric metasurface analogue of electromagnetically induced transparency / Nat. Commun. 2014. Vol. 5. P. 5753. DOI: 10.1038/ncomms6753
19. Kuznetsov A. I., Miroshnichenko A. E., Fu Y. H., et al. Magnetic light / Sci. Rep. 2012. Vol. 2. P. 57. DOI: 10.1038/srep00492
20. Krasnok A. E., Maksymov I. S., Denisyuk A. I., et al. Optical nanoantennas / Phys. Usp. 2013. Vol. 56. N 6. P. 539 – 564. DOI: 10.3367/UFNe.0183.201306a.0561
21. Paniagua-Dominguez R., Lukyanchuk B., Kuznetsov A. Control of scattering by isolated dielectric nanoantennas. — UK: Woodhead Publishing. 2020. P. 73 – 108.
22. Paniagua-Dominguez R., Yu Y., Miroshnichenko A., et al. Generalized Brewster effect in dielectric metasurfaces / Nat. Comm. 2016. Vol. 7. P. 10362. DOI: 10.1038/ncomms10362
23. Miroshnichenko A. E., Evlyukhin A. B., Yu Y. F., et al. Nonradiating anapole modes in dielectric nanoparticles / Nat. Comm. 2015. Vol. 6. P. 8069. DOI: 10.1038/ncomms9069
24. Lukyanchuk B., Paniagua-Domínguez R., Kuznetsov A., et al. Suppression of scattering for small dielectric particles: anapole mode and invisibility / Phil. Trans. Roy. Soc. A. 2017. Vol. 375. P. 20160069. DOI: 10.1098/rsta.2016.0069
25. Baryshnikova K. V., Smirnova D. A., Lukyanchuk B. S., Kivshar Y. S. Optical anapoles: Concepts and applications / Adv. Opt. Mater. 2019. Vol. 7. P. 1801350. DOI: 10.1002/adom.201801350
26. Tittl A., Leitis A., Liu M., et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces / Science. 2018. Vol. 360. P. 1105 – 1109. DOI: 10.1126/science.aas9768
27. Liberal I., Ederra I., Gonzalo R., Ziolkowski R. Induction Theorem Analysis of Resonant Nanoparticles: Design of a Huygens Source Nanoparticle Laser / Phys. Rev. Appl. 2014. Vol. 1. N 4. P. 044002. DOI: 10.1103/physrevapplied.1.044002
28. Shvartsburg A., Pecherkin V., Jiménez S., et al. Sub wavelength dielectric elliptical element as an anisotropic magnetic dipole for inversions of magnetic field / J. Phys. D. Appl. Phys. 2018. Vol. 51. P. 475001. DOI: 10.1088/1361-6463/aae1eb
29. Shvartsburg A. B., Pecherkin V. Ya., Vasilyak L. M., et al. Dielectric resonant magnetic dipoles: paradoxes, prospects and first experiments / Phys. Usp. 2018. Vol. 61. N 7. P. 698 – 706. DOI: 10.3367/UFNe.2017.03.038139
30. Shvartsburg A., Pecherkin V., Jiménez S., Vasilyak L., Vázquez L., Vetchinin S. Resonant phenomena in an all-dielectric rectangular circuit induced by a plane microwave / J. Phys. D. Appl. Phys. 2021. Vol. 54. P. 075004. DOI: 10.1088/1361-6463/abc280
31. Shvartsburg A. B., Vasilyak L. M., Vetchinin S. P., Alybin K. V., Volpyan O. D., Obod Yu. A., Pecherkin V. Ya., Privalov P. A., Churikov D. V. Resonance Scattering of GHz Plane Electromagnetic Waves from Ring Dielectric Linear Structures / Optics and Spectroscopy. 2021. Vol. 129. N 2. P. 252 – 255. DOI: 10.1134/S0030400X21020132
Review
For citations:
Vasilyak L.M., Volpyan O.D., Kuzmichev A.I., Obod Yu.A., Pecherkin V.Ya., Privalov P.A. Resonant reflection of plane microwave electromagnetic waves by the linear dielectric-ring structures. Industrial laboratory. Diagnostics of materials. 2022;88(2):49-53. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-2-49-53