Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Conversion of the kinetic indentation diagrams of ball indenter into stress-strain curves for metallic structural materials

https://doi.org/10.26896/1028-6861-2022-88-2-54-63

Abstract

A brief review of known approaches to converting diagrams obtained by indentation into tension diagrams is presented. It is noted that most studies on the transformation of kinetic diagrams of indentation of a spherical indenter into tension diagrams are carried out within the limits of uniform deformation using both computational and experimental approaches including the finite element method (FEM) and neural networks. However, we consider that such a transformation from one diagram to another can be fulfilled successfully when using the proper relationship between indentation and tension deformations. This makes it possible to obtain both more reliable estimation of the mechanical properties from indentation tests and more accurate transformation of these results into the stress-strain curves. A relative indentation diameter is one of the main parameters used in the most frequently used formulas for determining plastic deformation. However, at the same values of the relative indentation diameters and a constant ratio of the average contact pressure (Meyer hardness) to the true tensile stress, the strain values upon indentation and tensile can differ significantly due to different ability of materials to strain hardening. We determined a relationship between the true elastoplastic deformation in tensile tests and the relative depth of unrecovered indent obtained in indentation tests with allowance for strain hardening. A methodology for converting the kinetic indentation diagram into a tension diagram in the region of uniform deformation has been developed with the possibility of determining the yield strength, tensile strength, and ultimate uniform elongation of tested materials. The developed method was verified by testing steels, aluminum, magnesium and titanium alloys which differ greatly in the modulus of normal elasticity, strength characteristics, ductility and strain hardening.

About the Authors

V. M. Matyunin
National research university «Moscow Power Engineering Institute»
Russian Federation

Vyacheslav M. Matyunin

14, Krasnokazarmennaya ul., Moscow, 111250



A. Yu. Marchenkov
National research university «Moscow Power Engineering Institute»
Russian Federation

Artem Yu. Marchenkov

14, Krasnokazarmennaya ul., Moscow, 111250



P. V. Volkov
National research university «Moscow Power Engineering Institute»
Russian Federation

Pavel V. Volkov

14, Krasnokazarmennaya ul., Moscow, 111250



M. A. Karimbekov
National research university «Moscow Power Engineering Institute»
Russian Federation

Myrzamamat A. Karimbekov

14, Krasnokazarmennaya ul., Moscow, 111250



D. A. Zhgut
National research university «Moscow Power Engineering Institute»
Russian Federation

Daria A. Zhgut

14, Krasnokazarmennaya ul., Moscow, 111250



M. P. Petrova
National research university «Moscow Power Engineering Institute»; Yaroslavl State Technical University
Russian Federation

Maria P. Petrova

14, Krasnokazarmennaya ul., Moscow, 111250
88, Moskovskii prosp., Yaroslavl, 150023



N. O. Veremeeva
National research university «Moscow Power Engineering Institute»; JSC «Russian Space Systems»
Russian Federation

Natalya O. Veremeeva

14, Krasnokazarmennaya ul., Moscow, 111250
53, Aviamotornaya ul., Moscow, 111250



References

1. Davidenkov N. N. Stress-strain curves plotted based on the determination of hardness / Zh. Tekhn. Fiz. 1943. Vol. 13. N 7 – 8. P. 389 – 393 [in Russian].

2. Markovets M. P. Construction of diagrams of true stresses by hardness with technological sample / Zh. Tekhn. Fiz. 1949. Vol. 19. N 3. P. 371 – 382 [in Russian].

3. Tabor D. The Hardness of metals. — Oxford: Clarendon Press, 1951. — 175 p.

4. Davidenkov N. N., Belyaev S. E., Markovets M. P. Main mechanical characteristics of steel using hardness measurements / Zavod. Lab. 1945. Vol. 11. N 10. P. 964 – 973 [in Russian].

5. Ahn J.-H., Kwon D. Derivation of plastic stress-strain relationship from ball indentations: examination of strain definition and pileup effect / J. Mater. Res. 2001. Vol. 16. N 11. P. 3170 – 3178. DOI: 10.1557/JMR.2001.0437

6. Zaitsev G. P. Brinell hardness as a function of plasticity parameters / Zavod. Lab. 1949. Vol. 15. N 6. P. 704 – 711 [in Russian].

7. Ogar P. M., Gorokhov D. В. The relationship between the deformation of spherical indentation and tensile deformation / Key Eng. Mater. 2017. Vol. 723. P. 363 – 368. DOI: 10.4028/www.scientific.net/KEM.723.363

8. Bakirov M. B., Potapov V. V. Phenomenological method for determining the mechanical properties of WWER vessel steels based on the indentation diagrams of a ball indenter / Zavod. Lab. Diagn. Mater. 2000. Vol. 66. N 12. P. 35 – 43 [in Russian].

9. Shan Z., Gochale A. Utility of micro-indentation technique for characterization of the constitutive behavior of skin and interior microstructures of die-cast magnesium alloys / Mater. Sci. Eng. A. 2003. Vol. 361. N 1 – 2. P. 267 – 274. DOI: 10.1016/S0921-5093(03)00529-X

10. Ogar P., Kushnarev V., Kobzova I. Energy approach to determine mechanical properties of materials from the kinetic diagram of spherical indentation / Mater. Today. Proc. 2019. Vol. 19. P. 2342 – 2346. DOI: 10.1016/j.matpr.2019.07.684

11. Sreeranganathan A., Gokhale A., Tamirisakandala S. Determination of local constitutive properties of titanium alloy matrix in boron-modified titanium alloys using spherical indentation / Scripta Mater. 2008. Vol. 58. N 2. P. 114 – 117. DOI: 10.1016/j.scriptamat.2007.09.023

12. Mahmoudi A. H., Nourbakhsh S. H. A Neural Networks approach to characterize material properties using the spherical indentation test / Proc. Eng. 2011. Vol. 10. P. 3062 – 3067. DOI: 10.1016/j.proeng.2011.04.507

13. Matlin M. M., Mozgunova A. I., Kazankina E. M., Kazankin V. A. Methods of non-destructive testing of strength properties of machine parts. — Moscow: Innovatsionnoe mashinostroenie, 2019. — 246 p. [in Russian].

14. Matyunin V. M., Marchenkov A. Yu., Abusaif N., Goryachkina M. V., Rodyakina R. V., Karimbekov M. A., Zhgut D. A. Evaluation of Young’s modulus of construction materials by instrumented indentation using a ball indenter / Zavod. Lab. Diagn. Mater. 2021. Vol. 87. N 8. P. 64 – 68 [in Russian]. DOI: 10.26896/1028-6861-2021-87-8-64-68

15. Jonson K. L. The correlation of indentation experiments / J. Mech. Phys. Solids. Vol. 19. P. 115 – 126. DOI: 10.1016/0022-5096(70)90029-(31970)

16. Matyunin V. M., Marchenkov A. Yu., Volkov P. V. Determination of the offset yield strength point of the metal according to the instrumented indentation diagram with a ball indenter / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 6. P. 57 – 61 [in Russian].

17. Matyunin V. M., Marchenkov A. Yu., Abusaif N., Stasenko N. A. Evaluation of the Elastic Compliance of the Hardness Tester in Instrumented Indentation Tests / Inorg. Mater. 2020. Vol. 56. N 15. P. 1492 – 1498. DOI: 10.1134/S0020168520150157


Review

For citations:


Matyunin V.M., Marchenkov A.Yu., Volkov P.V., Karimbekov M.A., Zhgut D.A., Petrova M.P., Veremeeva N.O. Conversion of the kinetic indentation diagrams of ball indenter into stress-strain curves for metallic structural materials. Industrial laboratory. Diagnostics of materials. 2022;88(2):54-63. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-2-54-63

Views: 464


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)