Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Electrochemical sensors for the determination of carbofuran in natural objects (a review)

https://doi.org/10.26896/1028-6861-2022-88-3-5-14

Abstract

The review is devoted to the analysis of literature data on the development of modern electrochemical sensors for the determination of carbofuran in natural objects (water, soil, food). Sensors for the determination of carbofuran can be conditionally divided into two groups according to the type of electrode materials used: carbon-containing and biosensors. Carbon-containing sensors manufactured using nanotechnologies based on 0D – 3D allotropic modifications of carbon (carbon black, graphene, carbon nanotubes, fullerene) exhibit unique properties such as structural polymorphism, high surface area, thermal and chemical stability, biocompatibility, and original catalytic properties. At the same time, biosensors are considered promising analytical systems that complement traditional analytical methods due to the possibility of rapid on-site monitoring and miniaturization. Currently, biosensors used for the determination of carbofuran are mainly divided (proceeding from the type of bio-recognition elements) into enzyme biosensors (acetylcholinesterase and other enzymes) and immunosensors (antibodies and aptamers). Two detailed tables present data on electrochemical sensors developed for the determination of carbofuran in natural objects, including their advantages and shortcomings. All the developed sensors for the determination of carbofuran are characterized by high sensitivity, selectivity, rapidity, and low manufacturing cost, which makes electroanalytical methods a worthy alternative to the methods of analysis traditionally used for the determination of pesticides (liquid and gas chromatography, spectrophotometry, capillary electrophoresis, etc.). Preparation of vegetable and fruit samples for analysis using sensors of various types is described: the main stage of sample preparation is the alkaline hydrolysis of carbofuran, which is electrochemically inactive, to carbofuran-phenol. This review may be of interest to laboratories for the quality control of agricultural products and foodstuffs.

About the Authors

A. N. Solomonenko
National Research Tomsk Polytechnic University, School of Earth Sciences and Engineering
Russian Federation

Anna N. Solomonenko

30, ul. Lenina, Tomsk, 634050



E. V. Dorozhko
National Research Tomsk Polytechnic University, School of Earth Sciences and Engineering
Russian Federation

Elena V. Dorozhko

30, ul. Lenina, Tomsk, 634050



References

1. Melnikov N. N., Novozhilov K. V., Belan S. R., Pylova T. N. Handbook of pesticides. — Moscow: Khimiya, 1985. — 352 p. [in Russian].

2. Mishra S., Zhang W., Lin Z., et al. Carbofuran toxicity and its microbial degradation in contaminated environments / Chemosphere. 2020. Vol. 259. 127419. DOI: 10.1016/j.chemosphere.2020.127419

3. Patel S., Sangeeta S. Pesticides as the drivers of neuropsychotic diseases, cancers, and teratogenicity among agro-workers as well as general public / Environ. Sci. Pollut. Res. 2019. Vol. 26. N 1. P. 91 – 100. DOI: 10.1007/s11356-018-3642-2

4. Sanitary rules and norms of SanPiN 1.2.3685–21. Hygienic standards and requirements for ensuring the safety and (or) harmlessness of environmental factors for humans. Resolution N 2 of January 28, 2021 [in Russian].

5. Dias E., Morais S., e Costa F. G., Pereira M. L. A review on the assessment of the potential adverse health impacts of carbamate pesticides / Topics in public health. 2015. Chapter 9. P. 197 – 212. DOI: 10.5772/59613

6. Shormanov V. K., Galushkin S. G., Terskikh A. P., et al. Determination of carbofuran in biological material of plant origin / Kursk scientific and Practical bulletin «Man and his health». 2013. N 3. P. 107 – 113 [in Russian].

7. Talebianpoor M. S., Khodadoust S., Mousavi A., et al. Preconcentration of carbamate insecticides in water samples by using modified stir bar with ZnS nanoparticles loaded on activated carbon and their HPLC determination: Response surface methodology / Microchem. J. 2017. Vol. 130. P. 64 – 70. DOI: 10.1016/j.microc.2016.08.002

8. Xu X.-M., Yu S., Li R., et al. Distribution and migration study of pesticides between peel and pulp in grape by online gel permeation chromatography-gas chromatography/mass spectrometry / Food Chem. 2012. Vol. 135. N 1. P. 161 – 169. DOI: 10.1016/j.foodchem.2012.04.052

9. Wang Y., Cui L., Wang S., Li Y. Study on the determination of multicomponent pesticide residual based on synchronous-derivative fluorimetry / Spectrosc. Spectral Anal. 2006. Vol. 26. N 11. P. 2085 – 2088.

10. Daniel D., do Lago C. L. Determination of multiclass pesticides residues in corn by QuEChERS and capillary electrophoresis tandem mass spectrometry / Food Anal. Methods. 2019. Vol. 12. N 7. P. 1684 – 1692. DOI: 10.1007/s12161-019-01501-y

11. Oliveira T. M. B. F., Morais S. New generation of electrochemical sensors based on multi-walled carbon nanotubes / Appl. Sci. 2018. Vol. 8. N 10. P. 1925. DOI: 10.3390/app8101925

12. Villarreal C. C., Pham T., Ramnani P., Mulchandani A. Carbon allotropes as sensors for environmental monitoring / Curr. Opin. Electrochem. 2017. Vol. 3. N 1. P. 106 – 113. DOI: 10.1016/j.coelec.2017.07.004

13. Oliveira T. M. B. F., Ribeiro F. W. P., Sousa C. P., et al. Current overview and perspectives on carbon-based (bio) sensors for carbamate pesticides electroanalysis //TrAC Trends in Analytical Chemistry / TrAC: Trends Anal. Chem. 2020. Vol. 124. 115779. DOI: 10.1016/j.trac.2019.115779

14. Zhao F., Wu J., Ying Y., et al. Carbon nanomaterial-enabled pesticide biosensors: design strategy, biosensing mechanism, and practical application / TrAC: Trends Anal. Chem. 2018. Vol. 106. P. 62 – 83. DOI: 10.1016/j.trac.2018.06.017

15. Amine A., Mohammadi H., Bourais I., Palleschi G. Enzyme inhibition-based biosensors for food safety and environmental monitoring / Biosens. Bioelectron. 2006. Vol. 21. N 8. P. 1405 – 1423. DOI: 10.1016/j.bios.2005.07.012

16. Fischer J., Dejmkova H., Barek J. Electrochemistry of pesticides and its analytical applications / Curr. Organic Chem. 2011. Vol. 15. N 17. P. 2923 – 2935. DOI: 10.2174/138527211798357146

17. Della Pelle F., Del Carlo M., Sergi M., et al. Press-transferred carbon black nanoparticles on board of microfluidic chips for rapid and sensitive amperometric determination of phenyl carbamate pesticides in environmental samples / Microchim. Acta. 2016. Vol. 183. N 12. P. 3143 – 3149. DOI: 10.1007/s00604-016-1964-7

18. Della Pelle F., Angelini C., Sergi M., et al. Nano carbon black-based screen printed sensor for carbofuran, isoprocarb, carbaryl and fenobucarb detection: application to grain samples / Talanta. 2018. Vol. 186. P. 389 – 396. DOI: 10.1016/j.talanta.2018.04.082

19. Jirasirichote A., Punrat E., Suea-Ngam A., et al. Voltammetric detection of carbofuran determination using screen-printed carbon electrodes modified with gold nanoparticles and graphene oxide / Talanta. 2017. Vol. 175. P. 331 – 337. DOI: 10.1016/j.talanta.2017.07.050

20. Miyazaki C. M., Adriano A. M., Rubira R. J. G., et al. Combining electrochemically reduced graphene oxide and Layer-by-Layer films of magnetite nanoparticles for carbofuran detection / J. Environ. Chem. Eng. 2020. Vol. 8. N 5. 104294. DOI: 10.1016/j.jece.2020.104294

21. Chekol F., Mehretie S., Hailu F. A., et al. Roll-to-roll printed PEDOT/PSS/GO plastic film for electrochemical determination of carbofuran / Electroanalysis. 2019. Vol. 31. N 6. P. 1104 – 1111. DOI: 10.1002/elan. 201800883

22. Soltani-Shahrivar M., Karimian N., Fakhri H., et al. Design and Application of a Non-enzymatic Sensor Based on Metal-organic Frameworks for the Simultaneous Determination of Carbofuran and Carbaryl in Fruits and Vegetables / Electroanalysis. 2019. Vol. 31. N 12. P. 2455 – 2465. DOI: 10.1002/elan.201900363

23. Akkarachanchainon N., Rattanawaleedirojn P., Chailapakul O., Rodthongkum N. Hydrophilic graphene surface prepared by electrochemically reduced micellar graphene oxide as a platform for electrochemical sensor / Talanta. 2017. Vol. 165. P. 692 – 701. DOI: 10.1016/j.talanta.2016.12.092

24. Tan X., Hu Q., Wu J., et al. Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran / Sens. Actuators B. 2015. Vol. 220. P. 216 – 221. DOI: 10.1016/j.snb.2015.05.048

25. Wang M., Huang J., Wang M., et al. Electrochemical nonenzymatic sensor based on CoO decorated reduced graphene oxide for the simultaneous determination of carbofuran and carbaryl in fruits and vegetables / Food Chem. 2014. Vol. 151. P. 191 – 197. DOI: 10.1016/j.foodchem.2013.11.046

26. Mariyappan V., Keerthi M., Chen S. M. Highly Selective Electrochemical Sensor Based on Gadolinium Sulfide Rod-Embedded RGO for the Sensing of Carbofuran / J. Agricult. Food Chem. 2021. Vol. 69. N 9. P. 2679 – 2688. DOI: 10.1021/acs.jafc.0c07522

27. Pumera M. Electrochemistry of graphene, graphene oxide and other graphenoids / Electrochem. Commun. 2013. Vol. 36. P. 14 – 18. DOI: 10.1016/j.elecom.2013.08.028

28. Amatatongchai M., Sroysee W., Jarujamrus P., et al. Selective amperometric flow-injection analysis of carbofuran using a molecularly-imprinted polymer and gold-coated-magnetite modified carbon nanotube-paste electrode / Talanta. 2018. Vol. 179. P. 700 – 709. DOI: 10.1016/j.talanta.2017.11.064

29. Khadem M., Faridbod F., Norouzi P., et al. Voltammetric Determination of Carbofuran Pesticide in Biological and Environmental Samples Using a Molecularly Imprinted Polymer Sensor, a Multivariate Optimization / J. Anal. Chem. 2020. Vol. 75. N 5. P. 669 – 678. DOI: 10.1134/S1061934820050068

30. Baksh H., Buledi J. A., Khand N. H., et al. Ultra-selective determination of carbofuran by electrochemical sensor based on nickel oxide nanoparticles stabilized by ionic liquid / Chem. Monthly. 2020. Vol. 151. N 11. P. 1689 – 1696. DOI: 10.1007/s00706-020-02704-4

31. Soomro R. A., Hallam K. R., Ibupoto Z. H., et al. Glutaric acid assisted fabrication of CuO nanostructures and their application in development of highly sensitive electrochemical sensor system for carbamates / Electroanalysis. 2016. Vol. 28. N 7. P. 1634 – 1640. DOI: 10.1002/elan.201501095

32. Amatatongchai M., Thimoonnee S., Jarujamrus P., et al. Novel amino-containing molecularly-imprinted polymer coating on magnetite-gold core for sensitive and selective carbofuran detection in food / Microchem. J. 2020. Vol. 158. 105298. DOI: 10.1016/j.microc.2020.105298

33. Qi P., Wang J., Wang X., et al. Sensitive and selective detection of the highly toxic pesticide carbofuran in vegetable samples by a molecularly imprinted electrochemical sensor with signal enhancement by AuNPs / RSC Adv. 2018. Vol. 8. N 45. P. 25334 – 25341. DOI: 10.1039/C8RA05022H

34. Yang Y. X., Zhou Y., Liang Y., Wu R. CoO NPs/c-CNTs nanocomposite as electrochemical sensor for sensitive and selective determination of the carbofuran pesticide in fruits and vegetables / Int. J. Electrochem. Sci. 2021. Vol. 16. N 6. 210616. DOI: 10.20964/2021.06.26

35. Solomonenko A. N., Dorozhko E. V., Barek J., et al. Adsorptive stripping voltammetric determination of carbofuran in herbs on chromatographic sorbent modified electrode / J. Electroanal. Chem. 2021. Vol. 900. 115692. DOI: 10.1016/j.jelechem.2021.115692

36. Sun X., Li Q., Wang X., Du S. Amperometric immunosensor based on gold nanoparticles/Fe3O4-FCNTS-CS composite film functionalized interface for carbofuran detection / Anal. Lett. 2012. Vol. 45. N 12. P. 1604 – 1616. DOI: 10.1080/00032719.2012.677782

37. Sun X., Du S., Wang X., et al. A label-free electrochemical immunosensor for carbofuran detection based on a sol-gel entrapped antibody / Sensors. 2011. Vol. 11. N 10. P. 9520 – 9531. DOI: 10.3390/s111009520

38. Sun X., Du S., Wang X. Amperometric immunosensor for carbofuran detection based on gold nanoparticles and PB-MWCNTs-CTS composite film / Eur. Food Res. Technol. 2012. Vol. 235. N 3. P. 469 – 477. DOI: 10.1007/s00217-012-1774-z

39. Sun X., Zhu Y., Wang X. Amperometric immunosensor based on deposited gold nanocrystals/4,4’-thiobisbenzenethiol for determination of carbofuran / Food Control. 2012. Vol. 28. N 1. P. 184 – 191. DOI: 10.1016/j.foodcont.2012.04.027

40. Li S., Li J., Luo J., et al. A microfluidic chip containing a molecularly imprinted polymer and a DNA aptamer for voltammetric determination of carbofuran / Microchim. Acta. 2018. Vol. 185. N 6. 295. DOI: 10.1007/s00604-018-2835-1

41. Soulis D., Trigazi M., Tsekenis G., et al. Facile and low-cost SPE modification towards ultra-sensitive organophosphorus and carbamate pesticide detection in olive oil / Molecules. 2020. Vol. 25. N 21. 4988. DOI: 10.3390/molecules25214988

42. Shamagsumova R. V., Shurpik D. N., et al. Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar[5]arene / Talanta. 2015. Vol. 144. P. 559 – 568. DOI: 10.1016/j.talanta.2015.07.008

43. Li Y., Li. Y., Yu X., Sun Y. Electrochemical determination of carbofuran in tomatoes by a Concanavalin A (Con A) polydopamine (PDA)-reduced graphene oxide (RGO)-gold nanoparticle (GNP) glassy carbon electrode (GCE) with immobilized acetylcholinesterase (AChE) / Anal. Lett. 2019. Vol. 52. N 14. P. 2283 – 2299. DOI: 10.1080/00032719.2019.1609490

44. Jeyapragasam T., Saraswathi R. Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide-chitosan nanocomposite / Sens. Actuators B. 2014. Vol. 191. P. 681 – 687. DOI: 10.1016/j.snb.2013.10.054

45. Li Y., Zhao R., Shi L., et al. Acetylcholinesterase biosensor based on electrochemically inducing 3D graphene oxide network/multi-walled carbon nanotube composites for detection of pesticides / RSC Adv. 2017. Vol. 7. N 84. P. 53570 – 53577. DOI: 10.1039/C7RA08226F

46. Yang L., Wang G., Liu Y., Wang M. Development of a biosensor based on immobilization of acetylcholinesterase on NiO nanoparticles-carboxylic graphene-nafion modified electrode for detection of pesticides / Talanta. 2013. Vol. 113. P. 135 – 141. DOI: 10.1016/j.talanta.2013.03.025

47. Zhai C., Sun X., Zhao W., et al. Acetylcholinesterase biosensor based on chitosan/prussian blue/multiwall carbon nanotubes/hollow gold nanospheres nanocomposite film by one-stepelectrodeposition / Biosens. Bioelectron. 2013. Vol. 42. P. 124 – 130. DOI: 10.1016/j.bios.2012. 10.058

48. Rani Dutta R., Puzari P. Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode / Biosens. Bioelectron. 2014. Vol. 52. P. 166 – 172. DOI: 10.1016/j.bios.2013.08.050

49. Evtugyn G. A., Shamagsumova R. V., Padnya P. L., et al. Cholinesterase sensor based on glassy carbon electrode modified with Ag nanoparticles decorated with macrocyclic ligands / Talanta. 2014. Vol. 127. P. 9 – 17. DOI: 10.1016/j.talanta.2014.03.048

50. Samphao A., Suebsanoh P., Wongsa Y., et al. Alkaline phosphatase inhibition-based amperometric biosensor for the detection of carbofuran / Int. J. Electrochem. Sci. 2013. Vol. 8. N 3. P. 3254 – 3264.

51. Grawe G. F., Oliveira T. R., Narciso E. A., et al. Electrochemical biosensor for carbofuran pesticide based on esterases from Eupenicillium shearii FREI-39 endophytic fungus / Biosens. Bioelectron. 2015. Vol. 63. P. 407 – 413. DOI: 10.1016/j.bios.2014.07.069


Review

For citations:


Solomonenko A.N., Dorozhko E.V. Electrochemical sensors for the determination of carbofuran in natural objects (a review). Industrial laboratory. Diagnostics of materials. 2022;88(3):5-14. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-3-5-14

Views: 456


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)