Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the fractional composition of powders for 3D printing based on polyamide-12 using statistical methods of dimensional ranking

https://doi.org/10.26896/1028-6861-2022-88-3-35-40

Abstract

The quality of 3D printing depends on the properties of consumables, in particular, on the chemical composition of the powders, the size and shape of their particles. To eliminate printing defects, the working mixture of primary and secondary powders based on polyamide-12 should contain no more than 30% of the secondary powder. We present the results of studying the fractional composition of powders by the methods of statistical analysis. Digital images of polymer samples including morphological parameters of particle images were analyzed. To assess the fractional composition of the particles of primary and secondary powders, a statistical method of dimensional ranking and a differential method for determining the boundaries of fractions were used. It is shown that the particle area is the parameter most sensitive to changes in the structure of powders. The results of statistical ranking of effective particle radii are obtained proceeding from the histograms of the particle area distribution. The boundaries of the conditioned fraction are determined by the magnitude of the effective radii. A comparison of the fractional composition of primary and secondary powders, as well as calculation of the percentage of fine, working and large fractions were carried out taking into account the assessment of the fraction boundaries. It is revealed that the content of fractions of powder particles with conditioned dimensions should be about 64% of the total volume of the powder. Reduction of the amount of primary powder can lead to defects in 3D printing. The results obtained can be used to increase the degree of recovery of polyamide-12 based powders during 3D printing.

About the Authors

V. V. Khripushin
Professor N. E. Zhukovsky and Yu. A. Gagarin Air Force Academy
Russian Federation

Vladimir V. Khripushin

54a, ul. Starykh bol’shevikov, Voronezh, 394064



S. N. Trostyansky
Professor N. E. Zhukovsky and Yu. A. Gagarin Air Force Academy
Russian Federation

Sergey N. Trostyansky

54a, ul. Starykh bol’shevikov, Voronezh, 394064



N. Ya. Mokshina
Professor N. E. Zhukovsky and Yu. A. Gagarin Air Force Academy
Russian Federation

Nadezhda Ya. Mokshina

54a, ul. Starykh bol’shevikov, Voronezh, 394064



I. O. Baklanov
Professor N. E. Zhukovsky and Yu. A. Gagarin Air Force Academy
Russian Federation

Igor O. Baklanov

54a, ul. Starykh bol’shevikov, Voronezh, 394064



M. S. Shcherbakova
Professor N. E. Zhukovsky and Yu. A. Gagarin Air Force Academy; Voronezh State University of Engineering Technologies
Russian Federation

Margarita S. Shcherbakova

54a, ul. Starykh bol’shevikov, Voronezh, 394064; 19, pr. Revolutsii, Voronezh, 394036



References

1. Petrushin S. I., Saprykin A. A., Valter A. V., Saprykina N. A. Layerwise synthesis technology of the products prototype by selective laser powders sintering / Tekhnol. Mashinostr. 2015. N 3. P. 42 – 45 [in Russian].

2. Davydov V. M., Morokov A. A. Laser processing of constructional polyamide low-power lasers / Uch. Zam. TGU. 2016. Vol. 7. N 4. P. 445 – 448 [in Russian].

3. Panchenko V. Ya., Golubev V. S., Vasiltsov V. V., Galushkin M. G., Gryazev A. N. Laser technologies of materials processing: modern problems of fundamental research and applied developments: monograph. — Moscow: Fizmatlit, 2009. — 664 p. [in Russian].

4. Saprykina N. A., Saprykin A. A. The concept of laser sintering modes of powder materials / Vestn. KGTU. 2010. N 3. P. 49 – 52 [in Russian].

5. Dotchev K., Yusoff W. Recycling of polyamide 12 based powders in the laser sintering process / Rapid Prototyping Journal. 2009. Vol. 15. N 3. P. 192 – 203. DOI: 10.1108/13552540910960299

6. Lipson H., Kuman M. Fabricated: The New World of 3D Printing. — Wiley, 2013. — 320 p.

7. Goodridge R. D., Tuck C. J., Hague R. J. M. Laser sintering of polyamides and other polymers / Prog. Mater. Sci. 2012. Vol. 57. N 2. P. 229 – 267. DOI: 10.1016/j.pmatsci.2011.04.001

8. Miron-Borzan C., Dudescu M., Abd Elghany K. Analysis of Mechanical Proprieties of Selective Laser Sintered Polyamide Parts Obtained on Different Equipment / Mater. Plast. 2015. Vol. 52. P. 39 – 42.

9. Griffiths C., Howarth J., De Almeida-Rowbotham G. A design of experiments approach for the optimisation of energy and waste during the production of parts manufactured by 3D printing / J. Cleaner Prod. Publ. 2016. Vol. 139. P. 74 – 85. DOI: 10.1016/j.jclepro.2016.07.182

10. Saprykina N. A., Saprykin A. A., Shigaev D. A. Investigation of factors affecting the quality of the surface obtained by laser sintering / Obrab. Met. 2011. N 4. P. 78 – 82 [in Russian].

11. Shutilin Yu. F., Shcherbakova M. S., Khripushin V. V., Borisova I. A. The study of characteristics of powders of polymers for 3D printing / Vestn. VGUIT. 2017. Vol. 79. N 4. P. 157 – 164 [in Russian]. DOI: 10.20914/2310-1202-2017-4-157-164

12. Berman B. 3D Printing: The New Industrial Revolution / Business Horizons. 2012. Vol. 55. N 2. P. 155 – 162.

13. Khripushin V. V., Mokshina N. Ya., Pakhomova O. A. A method for assessing the quality of powder materials for 3d printing based on polyamide-12 / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 5. P. 36 – 40 [in Russian]. DOI: 10.26896/1028-6861-2018-84-5-36-40

14. DeMarco D. Excel for professionals. — Moscow: AST, 2008. — 298 p. [in Russian].

15. Walkenbach D. Microsoft Excel 2010. User’s Bible. — Moscow: Dialektika, 2014. — 912 p. [in Russian].

16. Khripushin V. V., Mokshina N. Ya., Shutilin Yu. F., Shcherbakova M. S. Influence of 3D-printing on properties of powders based on polyamide-12 / Khim. Tekhnol. 2020. Vol. 21. N 5. P. 205 – 209 [in Russian]. DOI: 10.31044/1684-5811-2020-21-5-205-209

17. Orlov A. I. The model of coincidence analysis in the calculation of nonparametric rank statistics / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 11. P. 66 – 72 [in Russian]. DOI: 10.26896/1028-6861-2017-83-11-66-72

18. Orlov A. I. Structure of nonparametric statistics / Zavod. Lab. Diagn. Mater. 2015. Vol. 81. N 7. P. 62 – 72 [in Russian].

19. Orlov A. I. Statistics of nonnumeric data in forty years (review) / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 11. P. 69 – 84 [in Russian]. DOI: 10.26896/1028-6861-2019-85-11-69-84

20. Gnatyuk V. I. Rank analysis in technocenosis management. — Moscow: Direkt-Media, 2014. — 540 p. [in Russian].

21. Gurina R. V., Yevseev D. A. Rank analysis, or a cenological approach, in the methodology of applied research. — Ulyanovsk: UlGU, 2018. — 287 p. [in Russian].


Review

For citations:


Khripushin V.V., Trostyansky S.N., Mokshina N.Ya., Baklanov I.O., Shcherbakova M.S. Study of the fractional composition of powders for 3D printing based on polyamide-12 using statistical methods of dimensional ranking. Industrial laboratory. Diagnostics of materials. 2022;88(3):35-40. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-3-35-40

Views: 522


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)