Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Chemical analysis of CsPbBr2X (X = Cl, I) nanocomposites by total reflection X-ray fluorescence spectroscopy (TXRF)

https://doi.org/10.26896/1028-6861-2022-88-4-5-9

Abstract

An approach to TXRF determination of the composition of perovskite nanocomposites of the putative composition CsPbBr2Cl and CsPbBr2I is proposed. Sample preparation consists in treatment of hydrophobic samples with dimethylformamide (DMFA) and subsequent dilution of the obtained solutions with water. When using copper solution as an internal standard the reproducibility of the results of TXRF determination of the elements is attained with a Sr no more than 0.05. The validity of the determination of Cs, Pb, Br, and I is confirmed by the results of their determination by ICP-MS in solutions after processing samples in DMFA followed by dilution with 2% HNO3 for Cs, Pb, Br or tetramethylammonium hydroxide TMAH for Cs, Pb, Br, and I, whereas the determination of chlorides is confirmed by the method of direct potentiometry in diluted solutions. It is shown that lead does not form insoluble chlorides in TMAH solution and does not interfere with the determination. The effect of bromides on the determination of chlorides is characterized by a potentiometric coefficient of 10–3. The results obtained provide determination of the stoichiometry of the synthesized compounds CsPbBr2Cl and CsPbBr2.7I0.3.

About the Authors

D. G. Filatova
Lomonosov Moscow State University; Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences
Russian Federation

119991, Moscow, Leninskiye Gory, 1–3
119334, Moscow, Leninsky prosp., 49



A. S. Chizhov
Lomonosov Moscow State University
Russian Federation

119991, Moscow, Leninskiye Gory, 1–3



M. N. Rumyantseva
Lomonosov Moscow State University
Russian Federation

119991, Moscow, Leninskiye Gory, 1–3



References

1. Zhao H., Zhou Y., Benetti D., et al. Perovskite quantum dots integrated in large-area luminescent solar concentrators. / Nano Energy. 2017. Vol. 37. P. 214 – 223. DOI:10.1016/j.nanoen.2017.05.030

2. Chizhov A., Rumyantseva M. N., Drozdov K. A., et al. Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals / Sens. Actuators B. 2021. Vol. 329. 129035. DOI:10.1016/j.snb.2020

3. Protesescu L., Yakunin S., Bodnarchuk M. I., et al. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamu. / Nano Lett. 2015. Vol. 15. P. 3692 – 3696. DOI:10.1021/nl5048779

4. Bakay M. S., Şarkaya K., Çadırcı M. Electrical properties of CsPbX3 (X = Cl, Br) perovskite quantum dot/poly (HEMA) cryogel nanocomposites / Mater. Chem. Phys. 2022. Vol. 27. 125479. DOI:10.1016/j.matchemphys.2021.125479

5. Chen C.-Y., Lin H.-Y., Chiang K.-M., et al. All-Vacuum-Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar Cells with Stabilized Efficiency Exceeding 11% / Adv. Mater. 2017. Vol. 29. 1605290. DOI:10.1002/adma.201605290

6. Sudipta S., Tasnim A., Apurba De, Anunay S. Tackling the Defects, Stability, and Photoluminescence of CsPbX3 Perovskite Nanocrystals / ACS Energy Lett. 2019. Vol. 4. P. 1610 – 1618. DOI:10.1021/acsenergylett.9b00849

7. Bin-Bin Zhang, Bao Xiao, Songtao Dong, Yadong Xu. The preparation and characterization of quasi-one-dimensional lead-based perovskite CsPbI3 crystals from HI aqueous solutions / J. Cryst. Growth. 2018. Vol. 498. P. 1 – 4. DOI:10.1016/j.jcrysgro.2018.05.027

8. Allegretta I., Giannelli R., Grisorio R., et al. Chemical analysis of cesium lead-halide perovskite nanocrystals by total-reflection X-ray fluorescence spectroscopy / Spectrochim. Acta B. 2020. Vol. 164. 105750. DOI:10.1016/j.sab.2019.105750

9. Eliseev E., Filatova D., Chizhov A., et al. Simple in situ analysis of metal halide perovskite-based sensor materials using micro X-ray fluorescence and inductively coupled plasma mass spectrometry / Mendeleev Comm. 2021. Vol. 31. N 4. P. 462 – 464. DOI:10.1016/j.mencom.2021.07.008

10. Maes J., Balcaen L., Drijver E., et al. On the Light Absorption Coefficient of CsPbBr3 Perovskite Nanocrystals / J. Phys. Chem. Lett. 2018. Vol. 9. P. 3093 – 3097. DOI:10.1021/acs.jpclett.8b01065

11. Rodríguez-Saldana V., Fobil J., Basu N. Lead (Pb) exposure assessment in dried blood spots using Total Reflection X-Ray Fluorescence (TXRF) / Environ. Res. 2021. Vol. 198. 110444. DOI:10.1016/j.envres.2020.110444

12. Costa C. L. S., Prais C. T., Nascentes C. C. A simple method for glass analysis using total reflection X-ray fluorescence spectrometry / Talanta. 2022. 123354. DOI:10.1016/j.talanta.2022.123354

13. Cinosi A., Siviero G., Monticelli D., Furian R. Trace element quantification in light fuels by total reflection X-ray fluorescence spectrometry / Spectrochim. Acta B. 2020. Vol. 164. 105749. DOI:10.1016/j.sab.2019.105749

14. Von Bohlen A., Fernández-Ruiz R. Experimental evidence of matrix effects in total-reflection X-ray fluorescence analysis: Coke case / Talanta. 2020. Vol. 209. 120562. DOI:10.1016/j.talanta.2019.120562


Review

For citations:


Filatova D.G., Chizhov A.S., Rumyantseva M.N. Chemical analysis of CsPbBr2X (X = Cl, I) nanocomposites by total reflection X-ray fluorescence spectroscopy (TXRF). Industrial laboratory. Diagnostics of materials. 2022;88(4):5-9. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-4-5-9

Views: 422


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)