Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Capabilities of size exclusion chromatography (in off- and on-line modes) to reduce matrix effects in ICP-MS analysis of complex solutions

https://doi.org/10.26896/1028-6861-2022-88-4-10-20

Abstract

The analytical capabilities of frontal size exclusion chromatography are studied using neutral polystyrene sorbents. When studying the separation of mineral acids and their salts, it is shown that clear separation of the zone of thorium ions and rare-earth elements from the following acid zone is observed on the microporous hypercrosslinked polystyrene sorbents Purolite NN-381 and MN-270. However, separation of the ions of highly charged elements (Zr, Hf, Nb, Ta) from the acid on the studied Purolite sorbents failed. Peaks of significant self-concentration appear in the zone of thorium and rare-earth element release at a concentration of 0.1 – 50 μg/liter. The factors affecting concentration of the analytes were studied. The nature and concentration of the acid, as well as concentration of the analytes, affect the concentration coefficients which attain maximum values in the solutions of nitric acid compared to hydrochloric and phosphoric acids. The degree of analyte concentration depends on the structure of internal pores and dispersion of the sorbent, as well as on the rate of solution passage through the column. Macro-components of seawater are not retained or concentrated on hypercrosslinked polystyrene. Sodium and magnesium at a concentration of 0.1 wt.% do not affect the value of the concentration factor of the target analytes. After chromatographic separation, weakly acidic fractions of the solution with concentrated ions of REE and thorium can be obtained by simple passing of a portion of the test solution through the sorbent layer for 15 – 30 min. The resulting concentrate can be directly introduced into a mass spectrometer. The possibility of combining chromatographic separation and concentration of elements and on-line ICP-MS detection is studied. Optimal conditions for on-line detection have been selected; the accuracy of the developed approach is demonstrated in the determination of rare earth elements in seawater using the spiked test.

About the Authors

I. F. Seregina
Lomonosov Moscow State University
Russian Federation

119991, Moscow, Leninskiye Gory, 1–3



L. M. Lebedeva
Lomonosov Moscow State University
Russian Federation

119991, Moscow, Leninskiye Gory, 1–3



M. P. Tsyurupa
A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
Russian Federation

119334, Moscow, Vavilova ul., 28



V. A. Davankov
A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
Russian Federation

119334, Moscow, Vavilova ul., 28



M. A. Bolshov
Lomonosov Moscow State University; Institute of Spectroscopy of the Russian Academy of Sciences
Russian Federation

119991, Moscow, Leninskiye Gory, 1–3
142190, Moscow, Troitsk, Fizicheskaya ul., 5



References

1. Okina O. I., Lyapunov S. M., Dubenskiy A. S., Erofeeva K. G. An investigation of trace elements’ behavior during chemical preparation of ultramafic matrix rock samples using bomb digestion for analysis by ICP-MS / J. Anal. At. Spectrom. 2020. Vol. 35. P. 2627 – 2638. DOI:10.1039/d0ja00255k

2. Sun Y., Sun S., Wang C. Y., Xu P. Determination of Rare Earth Elements and Thorium at Nanogram Levels in Ultramafic Samples by Inductively Coupled Plasma-Mass Spectrometry Combined with Chemical Separation and Preconcentration / Geostand. Geoanal. Res. 2013. Vol. 37. P. 65 – 76. DOI:10.1111/j.1751-908X.2012.00174.x

3. Certificate of Analysis, IAG MUH-1 (Ultramafic rock). International Association of Geoanalysts. 2020. Available at: http://iageo.com/wp-content/uploads/2020/03/M.UH-1-Certificate-of-analysis-revised-4th-November-2016 (accessed 15.12.2021).

4. Okina O. I., Lyapunov S. M., Dubenskiy A. S. Influence of sample treatment after bomb digestion on determination of trace elements in rock samples by ICP-MS / Microchem. J. 2018. Vol. 140. P. 123 – 128. DOI:10.1016/j.microc.2018.04.020

5. Li W., Wang C., Gao B., et al. Determination of multielement concentrations at ultra-low levels in alternating magnetite and pyrite by HR-ICP-MS using matrix removal and preconcentration / Microchem. J. 2016. Vol. 127. P. 237 – 246. DOI:10.1016/j.microc.2016.03.018

6. Potts P. J., Webb P. C., Thompson M. Bias in the determination of Zr, Y and Rare Earth Element concentrations in selected silicate rocks by ICP-MS when using some routine acid dissolution procedures: evidence from the GeoPT proficiency testing programme / Geostand. Geoanal. Res. 2015. Vol. 39. P. 315 – 327. DOI:10.1111/j.1751-908X.2014.00305.x

7. Fedyunina N. N., Seregina I. F., Bolshov M. A., et al. Investigation of the efficiency of the sample pretreatment stage for the determination of the Rare Earth Elements in rock samples by inductively coupled plasma mass spectrometry technique / Anal. Chim. Acta. 2012. Vol. 713. P. 97 – 102. DOI:10.1016/j.aca.2011.11.035

8. Yu Z., Robinson P., McGoldrick P. An evaluation of methods for the chemical de- composition of geological materials for trace element determination using ICP-MS / Geostand. Newslett. 2001. Vol. 25. P. 199 – 217. DOI:10.1111/j.1751-908X.2001.tb00596.x

9. Dubinin A. V. Geochemistry of Rare Earth Elements in the Ocean. — Moscow: Nauka, 2006. — 360 p. [in Russian].

10. Tazoe H., Amakawa H., Suzuki K., et al. Determination of Nd isotopic composition in seawater using newly developed solid phase extraction and MC-ICP-MS / Talanta. 2021. Vol. 232. ID 122435. DOI:10.1016/j.talanta.2021.122435

11. Balaram V. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact / Geosci. Front. 2019. Vol. 10. P. 1285 – 1303. DOI:10.1016/j.gsf.2018.12.005

12. Hatje V., Bruland K. W., Flegal A. R. Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in San Francisco Bay over a 20 year record / Environ. Sci. Technol. 2016. Vol. 50. P. 4159 – 4168. DOI:10.1021/acs.est.5b04322

13. Klaver G., Verheul M., Bakker I., et al. Anthropogenic rare earth element in rivers: gadolinium and lanthanum. Partitioning between the dissolved and particulate phases in the Rhine River and spatial propagation through the Rhine-Meuse Delta (The Netherlands) / Appl. Geochem. 2014. Vol. 47. P. 186 – 197. DOI:10.1016/j.apgeochem.2014.05.020

14. Bau M., Dulski P. Anthropogenic origin of positive gadolinium anomalies in river waters / Earth Planet Sci. Lett. 1996. Vol. 143. P. 245 – 255. DOI:10.1016/0012-821X(96)00127-6

15. Kulaksız S., Bau M. Rare earth elements, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere / Environ. Int. 2011. Vol. 37. P. 973 – 979. DOI:10.1016/j.envint. 2011.02.018

16. Song H., Shin W. J., Ryu J. S., et al. Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea / Chemosphere. 2017. Vol. 172. P. 155 – 165. DOI:10.1016/j.chemosphere.2016.12.135

17. Crocket K. C., Hill E., Abell R. E., et al. Rare earth element distribution in the NE Atlantic: evidence for benthic sources, longevity of the seawater signal, and biogeochemical cycling / Front. Mar. Sci. 2018. Vol. 5. P. 1 – 22. DOI:10.3389/fmars.2018.00147

18. Schmidt K., Bau M., Merschel G., Tepe N. Anthropogenic gadolinium in tap water and in tap water-based beverages fast-food franchises in six major cities in Germany, Sci. Total Environ. 2019. Vol. 687. P. 1401 – 1408. DOI:10.1016/j.scitotenv.2019.07.075

19. Hathorne E. C., Frank M., Mohan P. M. Rare earth elements in Andaman Island surface seawater: geochemical tracers for the monsoon / Front. Mar. Sci. 2020. Vol. 767. P. 1 – 19. DOI:10.3389/fmars.2019.00767

20. Hathorne E. C., Stichel T., Brück B., Frank M. Rare earth element distribution in the Atlantic sector of the Southern Ocean: the balance between particle scavenging and vertical supply / Mar. Chem. 2015. Vol. 177. P. 157 – 171. DOI:10.1016/j.marchem.2015.03.011

21. Shaw T. J., Duncan T., Schnetger B. A preconcentration/matrix reduction method for the analysis of rare earth elements in seawater and groundwaters by isotope dilution ICP-MS / Anal. Chem. 2003. Vol. 75. P. 3396 – 3403. DOI:10.1021/ac026158e

22. Zhu Y., Umemura T., Haraguchi H., et al. Determination of REEs in seawater by ICP-MS after on-line preconcentration using a syringe-driven chelating column / Talanta. 2009. Vol. 78. P. 891 – 895. DOI:10.1016/j.talanta.2008.12.072

23. Zhu Y. Determination of rare earth elements in seawater samples by inductively coupled plasma tandem quadrupole mass spectrometry after coprecipitation with magnesium hydroxide / Talanta. 2020. Vol. 209. 120536. DOI:10.1016/j.talanta.2019.120536

24. Cao X., Yin M., Wang X. Elimination of the spectral interference from polyatomic ions with rare earth elements in inductively coupled plasma mass spectrometry by combining algebraic correction with chromatographic separation / Spectrochim. Acta. Part B. 2001. Vol. 56. P. 431 – 441. DOI:10.1016/S0584-8547(01)00170-7

25. Freslon N., Bayon G., Birot D., Bollinger C. Determination of rare earth elements and other trace elements (Y, Mn, Co, Cr) in seawater using Tm addition and Mg(OH)2 co-precipitation / Talanta. 2011. Vol. 85. P. 582 – 587. DOI:10.1016/j.talanta.2011.04.023

26. Raso M., Censi P., Saiano F. Simultaneous determinations of zirconium, hafnium, yttrium and lanthanides in seawater according to a co-precipitation technique onto iron-hydroxide / Talanta. 2013. Vol. 116. P. 1085 – 1090. DOI:10.1016/j.talanta.2013.08.019

27. Hathorne E. C. Online preconcentration ICP-MS analysis of rare earth elements in seawater / Geochem. Geophy. Geosy. 2012. Vol. 13. N 1. P. 1 – 12. DOI:10.1029/2011GC003907

28. Seregina I. F., Perevoznik O. A., Bolshov M. A. Acid retardation method in analysis of strongly acidic solutions by inductively coupled plasma mass-spectrometry / Talanta. 2016. Vol. 159. P. 387 – 394. DOI:10.1016/j.talanta.2016.06.056

29. Podgornaya E. B., Burova O. I., Radilov A. C., et al. The use of the sorption method of acid retardation in systems with two liquid phases to solve the problems of sample preparation in the ICP-MS analysis system / Sorbts. Khromatogr. Prots. 2013. Vol. 13. N 5. P. 618 – 622 [in Russian].

30. Khamizov R. Kh., Krachak A. N., Podgornaya E. B., et al. Acid retardation effect in sorption columns with two liquid phases. Capabilities of application to sample preparation in elemental analysis / J. Anal. Chem. 2019. Vol. 74. N 3. P. 186 – 200. DOI:10.1134/S0044450219030071

31. Hatch M. J., Dillon J. A. Acid Retardation. A simple physical method for separation of strong acids from their salts / Ind. Eng. Chem. Process Des. Dev. 1963. Vol. 2. N 4. P. 253 – 263. DOI:10.1021/i260008a001

32. Khamizov R. Kh. Sorption method of «acid retardation». Some technological possibilities for electrolyte separation / Sorbts. Khromatogr. Prots. 2013. Vol. 13. N 5. P. 600 – 604 [in Russian].

33. Krachak A. N., Khamizov R. Kh., Poznukhova V. A. The main regularities of electrolyte separation in the method of acid retardation. Influence of the nature of the cation on the sorption of acids and their salts from binary solutions / Sorbts. Khromatogr. Prots. 2011. Vol. 11. N 1. P. 77 – 88 [in Russian].

34. Tsyurupa M. P., Blinnikova Z. K., Davankov V. A. Ion size exclusion chromatography of mineral electrolytes on neutral nanoporous hypercrosslinked polystyrene: the mechanism of «retardation» of acids, salts and bases / Sorbts. Khromatogr. Prots. 2013. Vol. 13. N 5. P. 541 – 552 [in Russian].

35. Davankov V. A., Tsyurupa M. P., Alexienko N. N. Selectivity in preparative separations of inorganic electrolytes by size-exclusion chromatography on hypercrosslinked polystyrene and microporous carbons / J. Chromatogr. A. 2005. Vol. 1100. P. 32 – 39. DOI:10.1016/j.chroma.2005.09.007

36. Davankov V. A., Tsyurupa M. P. Preparative frontal size-exclusion chromatography of mineral ions on neutral hypercrosslinked polystyrene / J. Chromatogr. A. 2005. Vol. 1087. P. 3 – 12. DOI:10.1016/j.chroma.2005.02.036

37. Davankov V. A., Tsyurupa M. P. Hypercrosslinked Polystyrene Sorbents. Structure, Properties, Application. — Saarbrücken: Palmarium Academic Publishing, 2012. — 76 p. [in Russian].

38. Ohtaki H., Radnai T. Structure and dynamics of hydrated ions / Chem. Rev. 1993. Vol. 93. N 3. P. 1157 – 1204. DOI:10.1021/cr00019a014

39. Nightingale E. R. Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions / Phys. Chem. 1959. Vol. 63. N 9. P. 1381 – 1387. DOI:10.1021/j150579a011

40. Davankov V. A., Tsyurupa M. P., Blinnikova Z. K., Pavlova L. A. Self-concentration effect in preparative SEC of mineral electrolytes using nanoporous neutral polymeric sorbents / J. Sep. Sci. 2009. Vol. 32. P. 64 – 73. DOI:10.1002/jssc.200800449

41. Tsyurupa M., Blinnikova Z., Davankov V. Ion Size Exclusion Chromatography on Hypercrosslinked Polystyrene Sorbents as a Green Technology of Separating Mineral Electrolytes / Inamuddin D., Mohammed A. (eds.) Green Chromatographic Techniques. — Dordrecht: Springer, 2014. P. 19 – 54. DOI:10.1007/978-94-007-7735-4 2


Review

For citations:


Seregina I.F., Lebedeva L.M., Tsyurupa M.P., Davankov V.A., Bolshov M.A. Capabilities of size exclusion chromatography (in off- and on-line modes) to reduce matrix effects in ICP-MS analysis of complex solutions. Industrial laboratory. Diagnostics of materials. 2022;88(4):10-20. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-4-10-20

Views: 373


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)