Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Voltammetric determination of pilocarpine hydrochloride in ophthalmic solutions

https://doi.org/10.26896/1028-6861-2022-88-4-21-26

Abstract

An express method for the determination of pilocarpine hydrochloride (PHC) in ophthalmic solutions based on titration of the analyte with photogenerated iodine obtained by irradiation of potassium iodide in the presence of a mixture of sensitizers (sodium eosinate:fluorescein:auramine in a molar ratio of 1:1:1) at pH 5.6 has been developed. The titrant content in the cell was controlled by the voltammetric method (amperometric titration with two polarized electrodes): during the PHC titration a decrease in the current strength in the circuit of the amperometric installation was observed. Stabilization of the current in the circuit of the amperometric installation indicated the completeness of the reaction, and, thus provided the possibility of estimation of the PHC content in a dosage form. The measured generation time required to replenish the loss of titrant upon further irradiation of the solution was also used to calculate the PHC content in the preparation. Testing of the developed technique was carried out on an ophthalmic drug «Pilocarpine, eye drops 1%». Introduction of more than 20.0 g of boric acid used as a preservative agent into the cell resulted in a slight underestimation of the PHC content. The determined PHC content in the sample of series 60918 is 0.93 – 0.94% (measured by generation time) is lower than the tolerance interval set by order of the Ministry of Health of the Russian Federation No. 751n, October 26, 2015 (0.95 – 1.05%). The PHC content in other samples falls within the recommended range, which indicates that the drug quality complies with GMP standards. A linear dependence of the analytical signal on the PHC concentration is observed in the range of 15 – 500 μg. The calculated detection and quantitation limits are 5.6 and 18.6 μg, respectively. The developed photochemical method for PHC determination in the drug «Pilocarpine, eye drops 1%» meets the requirements set forth in the manual for the validation of bioanalytical methods. The method is easy to use and does not require expensive equipment.

About the Authors

E. V. Turusova
I. N. Ulyanov Chuvash State University
Russian Federation

428015, Cheboksary, Moskovsky prosp., 15



O. E. Nasakin
I. N. Ulyanov Chuvash State University
Russian Federation

428015, Cheboksary, Moskovsky prosp., 15



References

1. Keyvanfard M., Mokhtari A., Emami I. Simple chemiluminescence determination of pilocarpine in pharmaceuticals and human serum / Acta Chim. Slov. 2011. Vol. 58. N 3. P. 563 – 568.

2. Lockhart P. B., Brennan M. T., Kent M. L., et. al. Randomized controlled trial of pilocarpine hydrochloride for the moderation of oral mucositis during autologous blood stem cell transplantation / Bone Marrow Transplant. 2005. Vol. 35. P. 713 – 720. DOI:10.1038/Sj.bmt.1704820

3. Rakić D., Antunović M. Preparation and testing of buffered eye drops containing pilocarpine chloride with timolol maleate / Vojnosanit Pregl. 2006. Vol. 63. N 10. P. 873 – 877. DOI:10.2298/vsp0610873r

4. Jun-Ho C., Bhattarai S., Oh T. J., Jang J. H. Enzymatic Extraction of Pilocarpine from Pilocarpus jaborandi / Korean J. Microbiol. Biotechnol. 2013. Vol. 41. N 2. P. 236 – 241. DOI:10.4014/kjmb.1303.03005

5. Kaga K., Kamasako T., Kaga M., et. al. Efficacy and safety of pilocarpine hydrochloride in the treatment of voiding difficulty in patients with detrusor underactivity / Clynics of Surgery. 2020. Vol. 5. P. 2899. DOI:10.25107/cis-v5-id2899

6. Nile C., Falleni M., Cirasola D., et al. Repurposing pilocarpine hydrochloride for treatment of Candida albicans infections / mSphere. 2019. Vol. 4. N 1. e00689-18. DOI:10.1128/mSphere.00689-18

7. Francisco E. da S., Mendes-da-Silva R. F., de Castro C. B. L., et al. Pilocarpine interaction in the malnourished rat brain: a behavioral, electrophysiological, and immunohistochemical analysis / Front. Neurosci. 2019. Vol. 13. DOI:10.3389/fnins.2019.00981

8. Zhang Y., Kam W. R., Liu Y., et al. Influence of pilocarpine and timolol on human meibomian gland epithelial cells / Cornea. 2017. Vol. 36. N 6. P. 719 – 724. DOI:10.1097/ICO.0000000000001181

9. Dunn D. L., Scott B. S., Dorsey E. D. Analysis of pilocarpine and isopilocarpine in ophthalmic solutions by normal-phase high-performance liquid chromatography / J. Pharm. Sci. 1981. Vol. 70. N 4. P. 446 – 449. DOI:10.1002/jps.2600700427

10. Gomez-Gomar A., Gonzalez-Aubert M., Costa-Segarra J. HPLC method for the simultaneous determination of pilocarpine, isopilocarpine, pilocarpic acid and isopilocarpic acid / J. Pharm. Biomed. Anal. 1989. Vol. 7. N 12. P. 1729 – 1734. DOI:10.1016/0731-7085(89)80187-6

11. Kuks P. F., Weekers L. E., Goldhoorn P. B. Decomposition of pilocarpine eye drops assessed by a highly efficient high pressure liquid chromatographic method / Pharm. Weekblad. 1990. Vol. 12. N 5. P. 196 – 199. DOI:10.1007/BF01980046

12. Moreira D. de L., Ribeiro S., Ribeiro A. J., et al. Development and validation of a new method to quantify pilocarpine in tablets by HPLC-DAD / Curr. Pharm. Anal. 2016. Vol. 12. N 4. P. 315 – 324. DOI:10.2174/1573412912666151111222510

13. Pereira R. C., Nonato C. de F. A., Camilo C. J., et al. Development and validation of a rapid RP-HPLC-DAD analysis method for the quantification of pilocarpine in Pilocarpus microphyllus (Rutaceae) / Food Chem. Toxicol. 2018. Vol. 119. P. 106 – 111. DOI:10.1016/j.fct.2018.05.023

14. Fonseca B. M., Rodrigues M., Alves G. First HPLC method for the simultaneous quantification of levetiracetam, zonisamide, lamotrigine, pentylenetetrazole and pilocarpine in rat plasma and brain / Anal. Methods. 2018. Vol. 10. P. 515 – 525. DOI:10.1039/C7AY02602A

15. Wang L. H., Li Y. H. Studies on the electrochemical behavior of the pilocarpine complex and its application using a flow-through polarographic sensor / Curr. Pharm. Anal. 2008. Vol. 4. N 1. P. 33 – 38. DOI:10.2174/157341208783497588

16. El-Masry S., Soliman R. New spectrophotometric assay for pilocarpine / J. AOAC Int. 1980. Vol. 63. N 4. P. 689 – 691. DOI:10.1093/jaoac/63.4.689

17. Elsayed M. A., Agarwal S. P. Spectrophotometric determination of atropine, pilocarpine and strychnine with chloranilic acid / Talanta. 1982. Vol. 29. N 6. P. 535 – 537. DOI:10.1016/0039-9140(82)80212-9

18. Abass A. M. Preparation Pilocarpine Hydrochloride Selective Electrodes / J. Al-Nahrain Univ. 2017. Vol. 20. N 4. P. 13 – 19.

19. Satuf M. L., Robles J. C., Goicoechea H. C., Olivieri A. C. Simultaneous Determination of Timolol Maleate and Pilocarpine Hydrochloride in Ophthalmic Solutions by First Derivative UV Spectrophotometry and PLS-1 Multivariate Calibration / Anal. Lett. 1999. Vol. 32. N 10. P. 2019 – 2033. DOI:10.1080/00032719908542949

20. Scott B. S., Dunn D. L., Dorsey E. D. Analysis of pilocarpine and isopilocarpine in ophthalmic solutions by UV spectrophotometry-polarimetry / J. Pharm. Sci. 1981. Vol. 70. N 9. P. 1046 – 1048. DOI:10.1002/jps.2600700921

21. Neville G. A., Hasan F. B., Smith I. C. P. Quantitative analysis of degradation products in pilocarpine hydrochloride ophthalmic formulations / J. Pharm. Sci. 1977. Vol. 66. N 5. P. 638 – 642. DOI:10.1002/jps.2600660508

22. Wang N. X., Chen J. M., Lu R. C., et al. Electroanalytical chemistry study of pilocarpine / Yao Xue Xue Bao. 1990. Vol. 25. N 5. P. 362 – 367.

23. RF Pat. 122490. Photochemical analyzer / Turusova E. V., Lyshchikov A. N., Nasakin O. E. / ChSU im. I. N. Ulyanova. — N 2012124461/15; publ. November 27, 2012 [in Russian].


Review

For citations:


Turusova E.V., Nasakin O.E. Voltammetric determination of pilocarpine hydrochloride in ophthalmic solutions. Industrial laboratory. Diagnostics of materials. 2022;88(4):21-26. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-4-21-26

Views: 649


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)