

Assessment of the data repeatability of x-ray diffraction study for silicon nitride powders of different dispersion
https://doi.org/10.26896/1028-6861-2022-88-4-27-32
Abstract
X-ray diffraction methods are indispensable for studying crystalline materials and provide determination of the phase composition, internal stresses and the parameters of unit cells of crystalline phases, as well as the crystalline size, which is related to the average grain size and affects the width of the diffraction peaks. We present the results of evaluating the repeatability of the X-ray diffraction data obtained for silicon nitride powders Si3N4 of different particle size and different initial phase ratios α-, β-Si3N4. The relative error of measuring the diffraction peaks was determined using the intensity detector and the absolute error of calculating the unit cell parameters was determined by the Rietveld method. The average particle size of the initial powders was analyzed using scanning electron microscopy. X-ray diffraction studies were performed according to the Bragg – Brentano scheme using CuKα radiation (λ = 1.5406 Å). A series of three experiments was performed for each powder. It is shown that the relative error of intensity measurements with a detector does not exceed 2% for peaks corresponding to 3σ criterion, and the absolute error of the determination of the unit cell phase parameters by the Rietveld method is 0.001 Å. The results obtained can be used to assess the stability of the diffractometer both for the samples based on silicon nitride and materials of different composition and structure, especially for submicron samples. In the latter case, the error of the parameters obtained by X-ray phase analysis can be taken into account without resorting to statistical estimates, as in the method of least squares.
About the Authors
P. D. DrozhilkinRussian Federation
603950, Nizhny Novgorod, prosp. Gagarina, 23
K. E. Smetanina
Russian Federation
603950, Nizhny Novgorod, prosp. Gagarina, 23
P. V. Andreev
Russian Federation
603950, Nizhny Novgorod, prosp. Gagarina, 23
A. A. Murashov
Russian Federation
603950, Nizhny Novgorod, prosp. Gagarina, 23
References
1. Kargin Yu. F., Lysenkov A. S., Ivicheva S. N., Solntsev K. A., Zakharov A. I., Popova N. A. Microstructure and properties of silicon nitride ceramics with calcium aluminate additions / Inorg. Mater. 2010. N 7. P. 799 – 803. DOI:10.1134/S0020168510070204
2. Rhee S.-H., Lee J. D., Kim D.-Y. Effect of α-Si3N4 initial powder size on the microstructural evolution and phase transformation during sintering of Si3N4 ceramics / J. Eur. Ceram. Soc. 2000. Vol. 20. N 1. P. 787 – 794. DOI:10.1016/S0955-2219(00)00053-4
3. Perevislov S. N. Sintering behavior and properties of reactive-sintered silicon nitride / J. Appl. Chem. 2021. Vol. 94. N 2. P. 153 – 162 [in Russian]. DOI:10.31857/S0044461821020031
4. Perevislov S. N., Nesmelov D. D. Properties of composite ceramics based on SiC and Si3N4 with a nanoscale component / Steklo Keram. 2017. N 7. P. 15 – 18 [in Russian].
5. Dinnebier R., Billinge S. Powder Diffraction. Theory and Practice. — RCS Publishing, 2008. — 582 p.
6. Rietveld H. M. The Rietveld method: a Retrospertion / Zeitschrift für Kristallographie. Vol. 225. N 12. P. 545 – 547. DOI:10.1524/zkri.2010.1356
7. Rietveld H. M. A profile refinement method for nuclear and magnetic structures / J. Appl. Crystallogr. 1969. Vol. 2. P. 65 – 71. DOI:10.1107/S0021889869006558
8. Pecharsky V., Zavalij P. Fundamentals of powder diffraction and structural characterization of materials. — Springer Science, 2005. — 713 p. DOI:10.1007/978-0-387-09579-0
9. Ritcher P. H. Estimating Errors in Least-Squares Fitting / TDA Progress Report. 1995. Vol. 42 – 122. P. 31.
10. Hudson D. Statistics for physicists. — Moscow: Mir, 1970. — 297 p. [Russian translation].
11. Kadilin V. V., Samosadniy V. T., Isakov S. V., et al. Scintillator methods for gamma-ray and electron spectrometry. — Moscow: Izd. MIFI, 2003. — 240 p. [in Russian].
12. Andreev P. V., Smetanina K. E., Gudz D. A., Tabachkova N. Yu., Shadrina Ya. S. X-Ray Powder Diffraction Analysis of the Phase Composition of α- and Near-α-Titanium Alloys / Zavod. Lab. Diagn. Mater. 2020. Vol. 86. N 9. P. 45 – 51 [in Russian]. DOI:10.26896/1028-6861-2020-86-9-45-51
13. Andreev P. V., Smetanina K. E., Lantsev E. A. Study of the Phase Composition of Fine-Grained Tungsten Carbide Based Ceramic Materials by X-Ray Phase Analysis / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 8. P. 37 – 42 [in Russian]. DOI:10.26896/1028-6861-2020-86-9-45-51
14. Pyzik A. J., Carroll D. F. Technology of Self-Reinforced Silicon Nitride / Ann. Rev. Mater. Sci. 1994. Vol. 24. N 1. P. 189 – 214.
15. Gusev A. I., Rempel A. A. Nanocrystalline Materials. — Cambridge: Cambridge International Science Publishing, 2004. — 351 p.
16. Kim H., Kwon J.-H., Rouviere J.-L., Zuo J. Determination of atomic vacancies in InAs/GaSb strained-layer superlattices by atomic strain / IUCrJ. 2018. Vol. 5. N 1. P. 67 – 72. DOI:10.1107/S2052252517016219
17. Tyurin Yu. N., Makarov A. A. Computer data analysis. — Moscow: MTsNMO, 2016. — 368 p. [in Russian].
18. McCusker L., Von Dreele R., Cox D., Louer D., Scard P. Rietveld Refinement guidelines / J. Appl. Cryst. 1999. Vol. 32. N 1. P. 36 – 50. DOI:10.1107/s0021889898009856
Review
For citations:
Drozhilkin P.D., Smetanina K.E., Andreev P.V., Murashov A.A. Assessment of the data repeatability of x-ray diffraction study for silicon nitride powders of different dispersion. Industrial laboratory. Diagnostics of materials. 2022;88(4):27-32. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-4-27-32