

Determination of the deformation deceleration coefficient for calculating the initial effective length of the working part of an annular specimen made of fuel cladding
https://doi.org/10.26896/1028-6861-2022-88-4-33-41
Abstract
When studying the plastic properties of metallic materials under tension, the initial calculated length of the sample which affects the final results is of significant importance. In the case of determining the short-term mechanical properties of the materials of fuel cladding pipes using annular samples, calculation of the initial effective length of their working part is rather difficult since the plastic deformation of the annular sample is unevenly distributed along the perimeter. This feature is taken into account using the deformation deceleration coefficient. We present the results of determining the deformation deceleration coefficient for calculation of the initial effective length of the working part of an annular sample made of fuel cladding. An experimental method for determining the coefficient is proposed, taking into account the measurements of the distribution of plastic deformation in certain areas along the perimeter of the sample. The method consists in stretching annular and ovalized samples with marks on the end surface. It is shown that for annular and ovalized specimens from the fuel cladding of a BN-600 reactor, the values of the deformation coefficient and effective length are k = 0.50 ± 0.04 and l0 = 6.1 ± 0.4 mm, respectively. Analysis of the actual relative deformation of the working parts and comparison with the relative elongation showed that when the ovalized specimens are stretched, the value of the relative plastic deformation is higher than that for annular specimens. The proposed method and the results obtained can be used in determination of the parameters of the materials used in the cladding pipes of the of fast neutron reactors.
About the Authors
R. P. KaragergiRussian Federation
624250, Zarechny, P.O. Box 29
M. V. Evseev
Russian Federation
624250, Zarechny, P.O. Box 29
A. V. Kozlov
Russian Federation
624250, Zarechny, P.O. Box 29
References
1. Karagergi R. P., Evseev M. V., Konovalov A. V., Kozlov A. V. The effect of the inhomogeneous distribution of ovalization-induced strain in a ring on its mechanical properties in subsequent elongation / AIP Conf. Proc. 2020. 2315(1).020020. DOI:10.1063/5.0037125
2. Karagergi R. P., Evseev M. V., Kozlov A. V. Distribution of plastic deformation along the perimeter of circular specimen of thin-wall fuel-element cladding during its expansion / Mater. Phys. Mech. 2021. Vol. 47. N 1. P. 74 – 88. DOI:10.18149/MPM.4712021_8
3. Neklyudov I. M., Ozhigov L. S., Savchenko V. I., et al. Determination peculiarities of plasticity characteristics of ring-type zirconium alloy specimens in the lateral direction / Probl. Prochn. 2001. N 2. P. 137 – 141 [in Russian].
4. Leontieva-Smirnova M. V., Kalinin B. A., Morozov E. M., Kostyukhina A. V., Fedotov P. V., Taktashev R. N. Methodical peculiarities of the ring specimens tensile tests / Fiz. Khim. Obrab. Mater. 2019. N 6. P. 62 – 71. DOI:10.1134/S2075113320030302 [in Russian].
5. Zaimovsky A. S., Nikulina A. V., Reshetnikov N. G. Zirconium alloys in nuclear power engineering. — Moscow: Énergoizdat, 1981. — 232 p. [in Russian].
6. Prokhorov V. I., Finko A. G., Mineev R. I. Experimental determination of the working length of circular specimens from fuel claddings under transverse tension. — Dimitrovgrad, 1977. — 24 p. [in Russian].
7. Kobylyansky G. P., Novoselov A. E. Radiation resistance of zirconium and zirconium-based alloys. Literature reference materials on reactor materials science. / Edited by V. A. Tsykanov. — Dimitrovgrad: GNTs RF NIIAR, 1996. — 176 p. [in Russian].
8. Arsene S., Bai J. A new approach to measuring transverse properties of structural tubing by a ring test / J. Testing Eval. 1996. Vol. 24. Issue 6. P. 386 – 391. DOI:10.1520/JTE11461J
9. Grigoriev V., Jakobsson R., Josefsson B., Schrire D. Advanced techniques for mechanical testing of irradiated cladding materials / Advanced post-irradiation examination techniques for water reactor fuel. — IAEA, 2002. P. 187 – 193.
10. Macdonald V., Le Boulch D., de Menibus A. H., Besson J., Auzoux Q., Crepin J., and Le Jolu T. Fracture of Zircaloy-4 fuel cladding tubes with hydride blisters / Proc. Mater. Sci. 2014. N 3. P. 233 – 238. DOI:10.1016/j.mspro.2014.06.041
11. Cohen A. B., Majumdar S., Ruther W. E., Billone M. C., Chung H. M., Neimark L. A. Modified ring stretch tensile testing of Zr-lNb cladding. — Argonne National Laboratory, 1997. — 19 p.
12. Kiraly M., Antok D., Horvath L., Hozer Z. Evaluation of axial and tangential ultimate tensile strength of zirconium cladding tubes / Nucl. Eng. Technol. 2018. N 50. P. 425 – 431. DOI:10.1016/j.net.2018.01.002
13. Loshmanov L. V., Fedotov P. V., Salatov A. V., Nechaeva O. A., Smirnov N. V. A specimen to study the mechanical properties and deformation behavior of a VVER reactor fuel element cladding material in the tangential direction / Nauch. Sess. MIFI. 2007. Vol. 8. P. 141 – 143 [in Russian].
14. Fedotov P. V., Loshmanov L. V., Kostyukhina A. V. The effect of short-term heat treatment on the mechanical properties of alloy E110 / Fiz. Khim. Obrab. Mater. 2014. N 5. P. 67 – 73 [in Russian].
15. Izmalkov I. N., Loshmanov L. V., Kostyukhina A. V. Mechanical properties of alloy É110 at temperatures up to 1273K / Izv. Vuzov. Yader. Énerget. 2013. N 2. P. 64 – 70 [in Russian]. DOI:10.26583/npe.2013.2.08.
16. Leontieva-Smirnova M. V., Izmalkov I. N., Valitov I. R., et al. Determination of the yield strength of steel EK-181 during tensile testing of circular specimens / Zavod. Lab. Diagn. Mater. 2016. Vol. 82. N 10. P. 56 – 61 [in Russian].
17. Kraynyuk E. A., Mitrofanov A. S., Ozhigov L. S., Savchenko V. I. Strength and ductility of metal of heat exchange pipes of steam generators of power units with the VVER-1000 reactors / Vopr. Atom. Nauki Tekhn. 2012. N 2(78). P. 52 – 55 [in Russian].
18. Ershova O. V., Shcherbakov E. N., Yagovitin P. I., et al. The relationship between changes in physicomechanical properties and swelling of austenitic steel CHS-68 under high-dose irradiation / Fiz. Met. Materialoved. 2008. Vol. 106. N 6. P. 644 – 649 [in Russian]. DOI:10.1134/S0031918X08120119
19. Mosin A. M., Evseev M. V., Portnykh I. A., et al. Changes in physicomechanical properties of fuel claddings made of steels ÉK164 and CHS68 after operation in the BN-600 reactor for four cycles between refueling / Izv. Vuzov. Yader. Énerget. 2011. N 1. P. 224 – 229 [in Russian]. DOI:10.26583/npe.2011.1.24
20. Barsanova S. V., Kozlov A. V., Shilo O. B. The effect of fast neutron irradiation on changes in the mechanical properties of austenitic steels EK-164 and CHS-68 / Vopr. Atom. Nauki Tekhn. 2018. N 5(6). P. 4 – 12 [in Russian].
21. Porollo S. I., Ivanov A. A., Konobeev Yu. V., Shulepin S. V. High-temperature irradiation-induced embrittlement of neutron-irradiated austenitic corrosion-resistant steels 08X8N10T, EI-847, EP-172 and CHS-68 / Atom. Énergiya. 2020. Vol. 128. Issue 2. P. 76 – 81 [in Russian]. DOI:10.1007/s10512-020-00655-x
Review
For citations:
Karagergi R.P., Evseev M.V., Kozlov A.V. Determination of the deformation deceleration coefficient for calculating the initial effective length of the working part of an annular specimen made of fuel cladding. Industrial laboratory. Diagnostics of materials. 2022;88(4):33-41. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-4-33-41