

Approximation of non-linear in-plain shear stress-strain diagrams of unidirectional and cross-ply reinforced polymer matrix composites
https://doi.org/10.26896/1028-6861-2022-88-4-48-57
Abstract
Approximation of the normalized in-plane shear stress-strain diagrams under the quasi-static loading of a variety of 25 unidirectional and cross-ply reinforced polymer matrix composites was studied. Approximation was carried out with the use of piecewise prescribed functions for two cases of deformation curve splitting into separate sections, i.e., into two and three parts. The first part is linear and corresponds to Hooke’s law. Description of the second and the third nonlinear parts required the development of a number of different functions relatively simple in structure with three or four independent parameters (coefficient) determined from boundary conditions in characteristic points of the in-plane shear stress-strain diagrams of polymer matrix composites. This approach provided using the minimum set of experimental characteristics of the material for approximation of the deformation curve. All the developed functions and their derivatives are continuous on all parts of the stress-strain diagrams. Assessment of the error of approximating functions was carried out by the criteria based on deviations between design and experimental values of the shear stress. The best functions having the smallest approximation error were determined for all considered materials both on average and separately for each material. It is shown that on average the error of approximation over three parts is 2.5 times less than that over two parts, however for some specific materials approximation over two parts appeared more accurate. The examples of approximation of in-plane shear stress-strain diagrams for three of 25 considered materials are presented for the cases of dividing the deformation curve into two or three parts. The approximating functions obtained can be recommended for use in modeling the stress-strain behavior of layered polymer matrix composites with allowance for nonlinearity of in-plane shear strain of the materials by taking into account the minimum required number of experimental characteristics.
About the Authors
A. O. PolovyiRussian Federation
249031, Obninsk, Kievskoye sh., 15
N. G. Lisachenko
Russian Federation
249031, Obninsk, Kievskoye sh., 15
References
1. Hinton M. J., Kaddour A. S., Soden P. D. Failure criteria in fibre reinforced polymer composites: The World-Wide Failure Exercise. — Elsevier Ltd., 2004. — 1268 p. DOI:10.1016/B978-0-080-44475-8.X5000-8
2. Fanteria D., Panettieri E. A non-linear model for in-plane shear damage and failure of composite laminates / J. Aerospace Sci. Technol. Syst. 2014. Vol. 93. P. 17 – 24. DOI:10.1007/BF03404672
3. McCarthy C. T., O’Higgins R. M., Frizzell R. M. A cubic spline implementation of non-linear shear behaviour in three-dimensional progressive damage models for composite laminates / Composite Structures. 2010. Vol. 92. P. 173 – 181. DOI:10.1016/j.compstruct.2009.07.025
4. Dumansky A. M., Tairova L. P., Gorlach I., Alimov M. A. A design-experiment study of nonlinear properties of coal-plastic / Probl. Mashinostr. Nadezhn. Mashin. 2011. N 5. P. 91 – 97 [in Russian].
5. Ruslantsev A. N., Dumansky A. M. Model of nonlinear deformation and damage accumulation in polymer composites / Nauka Obraz. MGTU im. N. Й. Baumana. 2014. N 2. P. 324 – 331 [in Russian]. DOI:10.7463/0214.0687567
6. Mohseni Shakib S. M., Li S. Modified three rail shear fixture (ASTM D 4255/D 4255M) and an experimental study of nonlinear in-plane shear behaviour of FRC / Composites Sci. Technol. 2009. Vol. 69. P. 1854 – 1866. DOI:10.1016/j.compscitech.2009.04.003
7. Fedulov B., Fedorenko A., Safonov A., Lomakin E. Nonlinear shear behavior and failure of composite materials under plane stress conditions / Acta Mech. 2017. Vol. 228. N 6. P. 2033 – 2040. DOI:10.1007/s00707-017-1817-4
8. Totry E., Molina-Aldareguia J. M., Gonzalez C., Llorca J. Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites / Composites Sci. Technol. 2010. Vol. 70. P. 970 – 980. DOI:10.1016/j.compscitech.2010.02.014
9. Kaddour A. S., Hinton M. J. Input data for test cases used in benchmark triaxial failure theories of composites / J. Composite Mater. 2012. Vol. 46. P. 2295 – 2312. DOI:10.1177/0021998312449886
10. Chamis C. C., Sinclair J. H. Ten-deg off-axis test for shear properties in fiber composites / Exp. Mech. 1977. Vol. 17. P. 339 – 346. DOI:10.1007/BF02326320
11. Liang Y., Wang H., Gu X. In-plane shear response of unidirectional fiber reinforced and fabric reinforced carbon/epoxy composites / Polymer Testing. 2013. Vol. 32. P. 594 – 601.
12. Soutis C., Turkmen D. Moisture and temperature effects on the compressive failure of CFRP unidirectional laminates / J. Composite Mater. 1997. Vol. 31. P. 832 – 849. DOI:10.1177/002199839703100805
13. Selmy A. I., Elsesi A. R., Azab N. A., Abd El-baky M. A. In-plane shear properties of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid and non-hybrid composites / Composites: Part B. 2012. Vol. 43. P. 431 – 438. DOI:10.1016/j.compositesb.2011.06.001
14. Choia J.-H., Janga J., Shima W., Chob J.-M., Yoonb S.-J., Choib Ch.-H., Hana H. N., Yu W.-R. Determination of the in-plane shear modulus of unidirectional carbon fiber reinforced plastics using digital image correlation and finite-element analysis / Composite Struct. 2019. Vol. 229. Art. 111392. DOI:10.1016/j.compstruct.2019.111392
15. Polovyi A. O., Matiushevski N. V., Lisachenko N. G. Unidirectional and cross-ply reinforced polymer matrix composites nonlinear deformation characteristics under in-plane shear-stress / Zavod. Lab. Diagn. Mater. 2021. Vol. 87. N 5. P. 47 – 55 [in Russian]. DOI:10.26896/1028-6861-2021-87-5-47-55
16. Ryabov V. M. Approximating real σ – ε diagram by a piecewise-linear diagram / Trudy TsNII im. akad. A. N. Krylova. 2014. N 83(367). P. 137 – 150 [in Russian].
17. Amelina E. V., Golushko S. K., Erasov V. S., Idimeshev S. V., Nemirovskiy Yu. V., Semisalov B. V., Yurchenko A. V., Yakovlev N. O. Deformation of polymers and carbon fiber reinforced plastics: the analysis and processing of experimental data / Omsk. Nauch. Vestn. 2015. N 3(143). P. 339 – 344 [in Russian].
18. Saveliev L. M. Analitical dascription of stress-strain diagram in stress and stability analysis / Vestn. Samar. Gos. Aérokosm. Univ. 2012. N 5(36). P. 148 – 152 [in Russian].
19. Tynkevich M. A., Pimonov A. G. Introduction to numerical analysis: textbook — Kemerovo: KuzGTU, 2017. — 176 p. [in Russian].
20. Polyakova V. V., Shabrova N. V. Bases of statistics theory: textbook. 2nd edition. — Yekaterinburg: Ural Federal University, 2015. — 148 p. [in Russian].
Review
For citations:
Polovyi A.O., Lisachenko N.G. Approximation of non-linear in-plain shear stress-strain diagrams of unidirectional and cross-ply reinforced polymer matrix composites. Industrial laboratory. Diagnostics of materials. 2022;88(4):48-57. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-4-48-57