Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Features of fatigue and damage-tolerance tests of full-scale metal-composite aircraft structures

https://doi.org/10.26896/1028-6861-2022-88-4-66-75

Abstract

The main features of the mechanisms of damage during cyclic loading of metal and composite materials have been studied. The results obtained are used to develop the approaches to fatigue and damage tolerance tests of metal-composite (hybrid) structures to confirm their safe operation. It is shown that composites exhibit higher scattering characteristics compared to metals due to their heterogeneity attributed to the anisotropy of the material properties, the presence of technological defects and various natural inhomogeneities in their structure, both in terms of static and fatigue properties. This leads to the necessity of testing two identical full-scale structures: one to confirm the service life of the metal part, and the other of the composite part. The fatigue tests of structures should be carried out for different ranges of variable loads, which differ in the size of the block of variable loads, the levels of «high» and «small» loads and the load enhancement coefficient. To carry out fatigue tests of the composite part of the structure during an acceptable time, it is necessary either to increase the loads of the variable loading spectrum, or to introduce additional «overload» cycles. Proceeding from the condition of the equality of the probabilities of non-destruction for the metal and composite parts of the structure, the relations for determination of the load enhancement coefficient kσ and the number of «overload» cycles n are obtained. The load enhancement coefficient is determined by the ratio: , where mc and mm are the exponents of fatigue curves of the composite and metal, ηc and ηm are the reliability coefficients when testing composite and metal parts. The required number of «overload» cycles is determined by the ratio: where σeq o, σeq are the equivalent stresses of the overload cycle and the spectrum of variable loads.

About the Authors

K. S. Shcherban
Central Aerohydrodynamic Institute (TsAGI)
Russian Federation

140180, Moscow obl., Zhukovskogo ul., 1



A. Y. Sterlin
Central Aerohydrodynamic Institute (TsAGI)
Russian Federation

140180, Moscow obl., Zhukovskogo ul., 1



K. Y. Famin
Central Aerohydrodynamic Institute (TsAGI)
Russian Federation

140180, Moscow obl., Zhukovskogo ul., 1



References

1. Strizius V. E. Mechanisms of accumulation of fatigue damage under complex program loading of layered composites: existing hypotheses / Nauch.-Tekhn. Byull. SPbPU. Estestv. Inzh. Nauki. 2019. Vol.25. N 4. P. 71 – 82 [in Russian]. DOI:10.18721/JEST.25406

2. Brunner A. J. Scatter, Scope and Structures: What fatigue fracture testing / 39th Risø International Symposium on Materials Science / IOP Conf. Series: Materials Science and Engineering 388 012003. 2018. — 19 p. DOI:10.1088/1757-899X/388/1/012003

3. Ushakov A. E. Methodology for ensuring operational survivability and safety of aircraft structures from PCM. — Moscow: Fizmatlit, 2012. — 203 p. [in Russian].

4. Quaresimin M., Zappalorto M., Maragoni L. A damage-based modelling framework for the fatigue damage evolution in composite laminates / Semantic scholar / Mater. Sci. 2018. P. 1456 – 1462. DOI:10.1063/1.5045901

5. John E. McCarty. Full-Scale Structural Testing / Composites. Vol.21: ASM Handbook / ASM International. 2001. P. 794 – 799. DOI:10.31399/asm.hb.v21.a0003445

6. Dubinskii S., Senik V., Feygenbaum Y. Study of Composite Impact Dent Visual Detectability and Damage Relaxation Phenomena / International Commttee on Aeronautical Fatigue / ICAF 2019 — Structural Integrity in the Age of Additive Manufacturing. 2019. P. 1101 – 1111. DOI:10.1007/978-3-030-21503-3_87

7. Setta K., Fukuoka T., Nagao K., Kumagai K. Full Scale Fatigue Testing for Mitsubishi Regional Jet / International Commttee on Aeronautical Fatigue / ICAF 2019 — Structural Integrity in the Age of Additive Manufacturing. 2019. P. 762 – 770. DOI:10.1007/978-3-030-21503-3_60

8. Daverschot D., Mattheij P., Renner M., Ardianto Y., De Araujo M., Graham K. Full-Scale Fatigue Testing from a Structural Analysis Perspective / International Commttee on Aeronautical Fatigue / ICAF 2019 — Structural Integrity in the Age of Additive Manufacturing. 2019. P. 788 – 800. DOI:10.1007/978-3-030-21503-3_62

9. Khanna A., Kotousov A. The potential for structural simulation to augment full scale fatigue testing: A review / Computer Science / Progress in Aerospace Sciences. 2020. Vol. 121. — 83 p. DOI:10.1016/j.paerosci.2020.100641

10. Willy R. P., Danielle F. N., da Silva R. Analysis Prediction and Correlation of Fiber Metal Laminate Crack Growth in Semi-Wing Full-Scale Test / International Committee on Aeronautical Fatigue / ICAF 2019 — Structural Integrity in the Age of Additive Manufacturing. 2019. P. 695 – 707. DOI:10.1007/978-3-030-21503-3_55

11. Scherban K. S., Zakharenkova A. Yu., Konovalov V. V., Kulikov S. V., Strizhius V. E. Full-Scale Fatigue and Residual Strength Tests of the Composite Wing Box of a Passenger Aircraft / International Committee on Aeronautical Fatigue / ICAF 2019 — Structural Integrity in the Age of Additive Manufacturing. 2019. P. 771 – 787. DOI:10.1007/978-3-030-21503-3_61

12. Wallbrink C., Krieg B. Spectrum Truncation or Spectrum Compression: When Time and Money Matters and Nothing Less Than a Fraction of the Original Spectrum is Acceptable / Proceedings of 29th conference ICAF2017. 2017. P. 1839 – 1848.

13. Healeya R., Wang J., Chiu W. K., Chowdhurya N. M., Baker A., Wallbrinkb C. A review on aircraft spectra simplification techniques for composite structures. — Elsevier / Composites Part C: Open Access Vol. 5. 100131. 2021. 16 p. DOI:10.1016/j.jcomc.2021.100131

14. Strizius V. E. Calculation of equivalent stresses and equivalents of fatigue testing programs for composite aircraft components / Nauch. Byull. MGTU GA. 2020. Vol. 23. N 23. P. 59 – 71 [in Russian]. DOI:10.26467/2079-0619-2020-23-2-59-71

15. Strizhius V. E. Fatigue Life Prediction of CFRP Laminate under Quasi-Random Loading / International Committee on Aeronautical Fatigue / ICAF 2019 — Structural Integrity in the Age of Additive Manufacturing. 2020. P. 423 – 431. DOI:10.1007/978-3-030-21503-3_33

16. Buimovich Y., Elmalich D. Examination of the KAWAI CLD Method for Fatigue Life Prediction of Composites / International Committee on Aeronautical Fatigue / ICAF 2019 — Structural Integrity in the Age of Additive Manufacturing. 2019. P. 399 – 409. DOI:10.1007/978-3-030-21503-3_31


Review

For citations:


Shcherban K.S., Sterlin A.Y., Famin K.Y. Features of fatigue and damage-tolerance tests of full-scale metal-composite aircraft structures. Industrial laboratory. Diagnostics of materials. 2022;88(4):66-75. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-4-66-75

Views: 383


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)