Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Sorption-photometric definition of thorium (IV) in clays

https://doi.org/10.26896/1028-6861-2022-88-5-22-26

Abstract

A simple and selective method for sorption-photometric determination of thorium (IV) micro amounts in clay using a new chelating sorbent, a copolymer of maleic anhydride with styrene modified with N1,N1,N2-triphenylguanidine, is proposed. The sorbent is white substance, insoluble in water, acids, weak alkalis and organic solvents. Sorbents were first ground in an agate mortar and sieved through a sieve (0.14 mm). The effect of pH of the medium, the ionic strength of the solution, contact time of the phases, concentration of thorium (IV) in the solution and on the sorption was studied under static conditions. Thorium concentration was determined by the photometric method using 2,2’,3,4-tetrahydroxy-3’-sulfo-5’-chloro-benzene. The concentration of thorium (IV) was calculated using a calibration curve, the results were processed statistically. The full static sorption capacity of the resulting sorbent on K+ ion was 13 mmol/g. An emphasis was also made on the study of the effect of the kinetic properties of sorbents on the sorption process. The maximum degree of thorium extraction by the sorbent was achieved from the solutions with pH 4. The time dependence of sorption was also studied. The results of the study showed that the sorption equilibrium is achieved after 2.5 h of contact of the sorbent with the metal. The sorption of thorium increases with an increase in the thorium concentration in the solution and attains maximum at a concentration of 8 × 10–3 M (pH 4, = 8 × 10–3 M, Vgen = 20 ml, mabsorbed = 0.05 g, sorption capacity = 348 mg/g). The degree of thorium (IV) extraction in optimal conditions exceeds 95%. It is shown that the main micro- and macro-components of clay do not affect the results of the determination of thorium. The developed technique was applied to determine thorium in a clay sample from the Shemakhi region of Azerbaijan. The correctness of the obtained results was confirmed by the spike test.

About the Author

F. N. Bahmanova
Baku State University
Azerbaijan

Fidan N. Bahmanova

23, Z. Khalilov ul., Baku, AZ 1148



References

1. Kathrin W., Ashley T. T., Pier M., et al. Critical evaluation of a seaFAST system for the analysis of trace metals in marine samples / Talanta. 2019. Vol. 197. P. 653 – 668. DOI:10.1016/j.talanta.2019.01.047

2. Shiri S., Delpisheh A., Haeri A., et al. Floatation-spectrophotometric Determination of Thorium, Using complex Formation with eriochrome cyanine R / Anal. Chem. Insights. 2011. Vol. 6. P. 1 – 6. DOI:10.4137/ACI.S5949

3. Fawwaz I. K., Najla’a H. S., Shaybe M. M. Sorption of uranium (VI) and thorium (IV) by jordanian bentonite / J. Chem. 2013. Vol. 13. Article ID 586136. DOI:10.1155/2013/586136

4. Guerra D. L., Viana R. R., Airoldi C. Adsorption of Thorium (IV) on Chemically Modifed Amazon Clays / J. Braz. Chem. Soc. 2009. Vol. 20. N 6. P. 1164 – 1174. DOI:10.1590/S0103-50532009000600023

5. İbrahim D. Selective Separation and Preconcentration of Thorium (IV) in Bastnaesite Ore Using Thorium (IV)-Imprinted Cryogel Polymer / Hacettepe J. Biol. Chem. 2018. Vol. 46. N 2. P. 187 – 197. DOI:10.15671/HJBC.2018.228

6. Gado M. A. Sorption of thorium using magnetic graphene oxide polypyrrole composite synthesized from natural source / Sep. Sci. Technol. 2018. Vol. 53. N 13. P. 2016 – 2033. DOI:10.1080/01496395.2018.1443130

7. Wysocka I., Vassileva E. Determination of ultra-trace level of 232Th in seawater by ICP-SFMS after matrix separation and preconcentration / Anal. Chim. Acta. 2018. Vol. 1000. P. 144 – 154. DOI:10.1016/j.aca.2017.09.018

8. Mahmoud A. A. A., Fatih C., Omer M., Ceren K. A. Assessment of reaction between thorium and polyelectrolyte nano-thin film using Box-Behnken design / Adsorp. Sci. Technol. 2018. Vol. 36. N 1 – 2. P. 586 – 607. DOI:10.1177/0263617417708658

9. Yaoyao H., Yang H., Lvcun C., et al. Selective biosorption of thorium (IV) from aqueous solutions by ginkgo leaf / PLoS One. 2018. e0193659. DOI:10.1371/journal.pone.0193659

10. Lokshin E. P., Tareeva O. A., Elizarova I. P. Separation of rare-earth elements and thorium in sorption conversion of phosphate rare-earth concentrate produced in nitric acid processing of Khibiny apatite concentrate / Russ. J. Appl. Chem. 2017. Vol. 90. N 4. P. 522 – 527. DOI:10.1134/S107042721704005X

11. Magerramov A. M., Alieva R. A., Alieva Z. M., et al. Concentration of thorium (IV) with a chelating sorbent / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 3. P. 21 – 24 [in Russian]. DOI:10.26896/1028-6861-2018-84-3-021-024

12. Basargin N. N., Magerramov A. M., Gadzhieva S. R., et al. Determination of uranium (VI) in natural waters after preconcentration on adsorbent containing m-aminophenol fragments / J. Anal. Chem. 2013. Vol. 68. N 2. P. 123 – 126. DOI:10.1134/S1061934813020032

13. Upor E., Mokhai M., Novak D. Photometric methods for the determination of traces of inorganic compounds. — Moscow: Mir, 1985. — 359 p. [in Russian].

14. Korostelev P. P. Preparation of solutions for chemical analytical work. — Moscow: Nauka, 1964. — 401 p. [in Russian].

15. Alieva R. A., Mugalova G. R., Nagiev Kh. D., Chyragov F. M. Spectrophotometric study of the mixed ligand complex Mo (VI) with 2,3,4-trioxy-4’-sulfoazobenzene in the presence of triton X-114 / Khim. Probl. 2008. N 1. P. 175 – 177 [in Russian].

16. Alieva R. A., Chyragov F. M., Gamidov S. Z. Sorption study of copper (II) polymer sorbent / Khim. Probl. 2006. N 4. P. 161 – 163 [in Russian].


Review

For citations:


Bahmanova F.N. Sorption-photometric definition of thorium (IV) in clays. Industrial laboratory. Diagnostics of materials. 2022;88(5):22-26. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-5-22-26

Views: 329


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)