

A probabilistic approach to the description of the crack kinetics and fatigue failure of structural components with allowance for the effect of crack retardation after overloads
https://doi.org/10.26896/1028-6861-2022-88-5-42-50
Abstract
A probabilistic approach to assessing fatigue strength and cyclic life based on Wheeler’s model is presented. The approach provides the possibility of estimating the probability of failure of the structural component under consideration, with allowance for the effect of crack retardation after the overload. The initial crack size, the parameters of the Paris equation, and the exponent of the crack retardation power function are assumed random parameters. The kinetics of a fatigue crack is described by cycle-by-cycle integration of the Paris equation written in finite differences. The probabilistic estimate is performed using the Monte Carlo statistical simulation method by repeatedly solving the Cauchy problem for various combinations of the values of random model parameters that are generated under the adopted laws of the probability distributions of those parameters. The probabilistic distributions of random parameters are selected proceeding from the level of the uncertainty of the problem using available statistical data without taking into accounting for data on the actual state of a particular structural component in real operation conditions. A computer code in Matlab environment has been developed for statistical description of the fatigue crack growth in structural components which allows accounting for the effect of crack retardation. An example of assessing the probability of the fatigue failure of a pipeline component with a longitudinal crack on the inner surface loaded by the internal pressure which varies according to a periodic law with a constant amplitude is presented for single tensile overload of the pipeline component. The dependencies of the fatigue failure probability on the number of loading cycles for various combinations of model parameters were obtained. The sensitivity of the fatigue failure probability under a given number of loading cycles to changes of the values of structural parameters was assessed.
About the Authors
N. A. MakhutovRussian Federation
Nikolai A. Makhutov
4, Maliy Kharitonievskii per., Moscow, 101990
Y. G. Matvienko
Russian Federation
Yuri G. Matvienko
4, Maliy Kharitonievskii per., Moscow, 101990
D. O. Reznikov
Russian Federation
Dmitry O. Reznikov
4, Maliy Kharitonievskii per., Moscow, 101990
References
1. Makhutov N. A. Strength and safety: basic and applied developments. — Novosibirsk: Nauka, 2008. — 528 p. [in Russian].
2. Matvienko Yu. G., Kuzmin D. A., Reznikov D. O., Potapov V. V. Assessment of the probability of fatigue fracture with accounting for the statistical scatter of mechanical properties of the material and the residual defectness of structural components / Probl. Mashinostr. Nadezhn. Mashin. 2021. Vol. 50. P. 302 – 311 [in Russian]. DOI:10.3103/S1052618821040075
3. Schijve J. Fatigue of Structures and Materials. — Delft: Springer, 2009. — 623 p.
4. Savkin A. N., Bagmutov V. P. Prediction of fatigue durability of high loaded structures. — Volgograd: VolgGTU, 2013. — 364 p. [in Russian].
5. Savkin A. N., Andronik A. V., Badikov K. A., Sedov A. A. Study of the duration of the fatigue crack growth in steels depending on the nature of variable loading / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 3. P. 43 – 51 [in Russian]. DOI:10.26896/1028-6861-2018-84-3-43-51
6. Savkin A. N., Badikov K. A., Sedov A. A. Modeling and calculation of the fatigue crack growth life in structural steels / Zavod. Lab. Diagn. Mater. 2021. Vol 87. N 4. P. 43 – 51 [in Russian]. DOI:10.26896/1028-6861-2021-87-4-43-51
7. Emelyanov O. V., Pilipenko M. P. The effect of overloads on fatigue crack growth rate / Vestn. Yuzh.-Ural. Gos. Univ. Ser. Stroit. Arkhitect. 2011. Issue 13. P. 21 – 24 [in Russian].
8. Wheeler O. E. Spectrum loading and crack growth / J. Basic Eng. 1972. Vol. 94. N 1. P. 181 – 186.
9. Willenborg J., Engle R. M., Wood H. A. A crack growth retardation model using an effective stress concept. Dayton (OH): Air Force Flight Dynamics Lab, Wright-Patterson AFB; 1971. Report No. AFFDL-TM-71-1-FBR.
10. Yamada Y., Ziegler B., Newman J. C. Application of a strip-yield model to predict crack growth under variable-amplitude and spectrum loading. Part 1: Compact specimens / Eng. Fract. Mech. 2011. Vol. 78. P. 2597 – 2608. DOI:10.1016/j.engfracmech.2011.06.015
11. Ziegler B., Yamada Y., Newman J. C. Application of a strip-yield model to predict crack growth under variable-amplitude and spectrum loading. Part 2: Middle-crack-tension specimens / Eng. Fract. Mech 2011. Vol. 78. P. 2609 – 2619. DOI:10.1016/j.engfracmech.2011.06.018
12. Matvienko Yu. G. Models and Criteria of Fracture Mechanics. — Moscow: Fizmatlit, 2006. — 328 p. [in Russian].
13. Kroese D. P., Taimre T., Botev Z. I. Handbook of Monte Carlo methods. Vol. 706. — John Wiley & Sons, 2013. — 772 p.
14. Sheu B. C., Song P. S., Hwang S. Shaping exponent in wheeler model under a single overload / Eng. Fract. Mech. 1995. Vol. 51. P. 135 – 143.
15. Makhutov N. A., Levin O. A. Determination of cyclic fracture toughness under random loading / Zavod. Lab. 1984. Vol. 50. N 12. P. 55 – 59 [in Russian].
16. Makhutov N. A., Alymov V. T., Barmas Yu. V. Engineering methods of assessment and life extension of complex technical systems based on fracture mechanics criteria / Zavod. Lab. Diagn. Mater. 1997. Vol. 63. N 6. P. 45 – 51 [in Russian].
17. Matvienko Yu. G., Kuzmin D. A., Reznikov D. O., Potapov V. V. Assessment of the probability of fatigue fracture of structural components subjected to deterministic and stochastic loading with accounting for the scatter of the initial size of cracks / Zavod. Lab. Diagn. Mater. 2021. Vol. 87. N 10. P. 44 – 53 [in Russian]. DOI:10.26896/1028-6861-2021-87-10-44-53
Review
For citations:
Makhutov N.A., Matvienko Y.G., Reznikov D.O. A probabilistic approach to the description of the crack kinetics and fatigue failure of structural components with allowance for the effect of crack retardation after overloads. Industrial laboratory. Diagnostics of materials. 2022;88(5):42-50. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-5-42-50