

Study of radar absorbing characteristics of polymer composites with ferrite fillers
https://doi.org/10.26896/1028-6861-2022-88-6-31-45
Abstract
The search for effective radio-absorbing materials is an urgent task in solving the problems of electromagnetic compatibility, electromagnetic pollution, as well as stealth and stealth technologies. We present the results of studying the electrophysical and radio-absorbing characteristics of ferrite-polymer composites depending on the structure and magnetic properties of the ferrite filler, as well as the dielectric properties of the polymer matrix. The radio absorbing characteristics of composites F-42/Mn-Zn-ferrite, F-42/Ni-Zn-ferrite, F-42/yttrium iron garnet, F-42/BaFe12O19, F2M/LiMnZn-spinel, PS525/Mn-Zn -ferrite, PVA/Mn-Zn ferrite, and PVA/Ni-Zn ferrite have been studied. Experimental data on the reflection coefficient, determined on a metal plate in a frequency range of 0.1 – 7 GHz showed that spinel ferrites and composites containing them are effective radio absorbing materials. Analysis of the spectra of complex dielectric and magnetic permeability revealed that composites with spinel ferrites and yttrium iron garnet are characterized by a dispersion of the magnetic permeability, which arises as a result of resonance processes of the motion of domain boundaries and natural ferromagnetic resonance. Moreover, the electrical properties of ferrites can affect the high-frequency spectra of the permittivity and permeability. It is shown that the use of electroactive polymers as matrices makes it possible to increase dielectric losses in the high-frequency range and obtain the maximum attenuation of electromagnetic radiation within 25 – 40 dB with a width of 10 dB up to 2.5 GHz in 2 – 7 GHz range. The results obtained can be used in further study of the functional properties of radio-absorbing materials in the high-frequency range.
About the Authors
V. G. KostishinRussian Federation
Vladimir G. Kostishin
4, Leninsky pr., Moscow, 117409
R. I. Shakirzyanov
Russian Federation
Rafael I. Shakirzyanov
4, Leninsky pr., Moscow, 117409
Igor M. Isaev
Russian Federation
Igor M. Isaev
4, Leninsky pr., Moscow, 117409
Dmitry V. Salogub
Russian Federation
Dmitry V. Salogub
NUST MISiS
References
1. Mikhailin Yu. A. Special polymer composite materials. — St. Petersburg: Nauchnye osnovy tekhnologii, 2009. — 660 p. [in Russian].
2. Kumar D., Moharana A., Kumar A. Current trends in spinel based modified polymer composite materials for electromagnetic shielding / Mater. Today Chem. 2020. Vol. 17. P. 100346. DOI: 10.1016/j.mtchem.2020.100346
3. Tammareddy H., Ramji K., Siva Naga Sree P., Santhosi B. Complex permittivity, permeability and microwave absorbing properties of PANI coated MWCNTsManganese Zinc ferrite nanocomposite / Mater. Today: Proc. 2019. Vol. 18. P. 420 – 425. DOI: 10.1016/j.matpr.2019.06.320
4. Abbasa S., Dixit A., Chatterjee R., Goel T. Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composites / J. Magn. Magn. Mater. 2007. Vol. 309. P. 20 – 24. DOI: 10.1016/j.jmmm.2006.06.006
5. Bayrakdar H. Electromagnetic propagation and absorbing property of ferrite-polymer nanocomposite structure / Prog. Electromagn. Res. M. 2012. Vol. 25. P. 269 – 281. DOI: 10.2528/PIERM12072303
6. Charles A. D., Rider A. N., Brown S. A., Wang C. H. Multifunctional magneto-polymer matrix composites for electromagnetic interference suppression, sensors and actuators / Prog. Mater. Sci. 2021. Vol. 115. P. 100705. DOI: 10.1016/j.pmatsci.2020.100705
7. Green M., Chen X. Recent progress of nanomaterials for microwave absorption / J. Materiomics. 2019. Vol. 5. P. 503 – 541. DOI: 10.1016/j.jmat.2019.07.003
8. Lagarkov A. N., Rozanov K. N. High-frequency behavior of magnetic composites / J. Magn. Magn. Mater. 2009. Vol. 321. P. 2082 – 2092. DOI: 10.1016/j.jmmm.2008.08.099
9. Moucka R., Lopatin A., Kazantseva N., Vilcakova J., Saha P. Enhancement of magnetic losses in hybrid polymer composites with MnZn-ferrite and conductive fillers / J. Mater. Sci. 2007. Vol. 42. P. 9480 – 9490. DOI: 10.1007/s10853-007-2081-0
10. Gama A. M., Rezende M. C., Dantas C. C. Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials / J. Magn. Magn. Mater. 2011. Vol. 323. P. 2782 – 2785. DOI: 10.1016/j.jmmm.2011.05.052
11. Shakirzyanov R. I., Kostishyn V. G., Morchenko A. T., et al. Synthesis and Property Study of Films of Microwave-Absorbing Composites Consisting of Mn0.5792Zn0.2597Fe2.1612O4 Inclusions and the –[(CH2–CH2)m–(CF2–CF2)n]k– Polymer Matrix / Russ. J. Inorg. Chem. 2020. Vol. 65. N 6. P. 829 – 833. DOI: 10.1134/S0036023620060194
12. Meshram M., Agrawal N., Sinha B., Misra P. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber / J. Magn. Magn. Mater. 2004. Vol. 271. P. 207 – 214. DOI: 10.1016/j.jmmm.2003.09.045
13. Zhang X., Sun W. Three-layer microwave absorber using cement-based composites / Mag. Concr. Res. 2011. Vol. 63. N 3. P. 157 – 162. DOI: 10.1680/macr.9.00196
14. Ali N., Atassi Y., Salloum A., Charba A., Malki A., Jafarian M. Comparative study of microwave absorption characteristics of (Polyaniline/NiZn ferrite) nanocomposites with different ferrite percentages / Mater. Chem. Phys. 2018. Vol. 211. P. 79 – 87. DOI: 10.1016/j.matchemphys.2018.02.017
15. Liu P., Yao Z., Zhou J. Fabrication and microwave absorption of reduced graphene oxide/Ni0.4Zn0.4Co0.2Fe2O4 nanocomposites / Ceram. Int. 2016. Vol. 42. P. 9241 – 9249. DOI: 10.1016/j.ceramint.2016.03.026
16. Tong S., Tung M., Ko W.-S., et al. Effect of Ni fillers on microwave absorption and effective permeability of NiCuZn ferrite/Ni/polymer functional composites / J. Alloys Compd. 2013. Vol. 550. P. 39 – 45. DOI: 10.1016/j.jallcom.2012.09.096
17. Nagasree P., Ramji K., Haritha T., Santoshi B. Polymer based MWCNT/Nickel Zinc Ferrite nanocomposites for RAS application with simulation / Mater. Today: Proc. 2019. Vol. 18. P. 406 – 412. DOI: 10.1016/j.matpr.2019.06.318
18. Isaev I. M., Kostishin V. G., Shakirzyanov R. I., Kayumova A. R., Salogub D. V. Electromagnetic Properties of Li0.33Fe2.29Zn0.21Mn0.17O4/P(VDF-TFE) Polymer Composites in the Frequency Range 100 – 7000 MHz / Phys. Tech. Sem. 2022. Vol. 56. N 1. P. 114 – 119 [in Russian]. DOI: 10.21883/FTP.2022.01.51821.9728
19. Kostishin V. G., Isaev I. M., Shakirzyanov R. I., Salogub D. V., Kayumova A. R., Olitsky V. K. Radar absorbing properties of ferrite-polymer composites polyvinyl alcohol/ Ni-Zn ferrite / J. Tech. Phys. 2022. Vol. 92. N 1. P. 131 – 137 [in Russian]. DOI: 10.21883/JTF.2022.01.51862.217-21
20. Isaev I. M., Kostishin V. G., Shakiryaznov R. I., Kayumova A. R., Olitsky V. K., Salogub D. V. Radar absorbing and radio shielding characteristics of ferrite-polymer composites Mn-Zn ferrite/P(TFE-VDF) / J. Tech. Phys. 2022. Vol. 92. N 3. P. 462 – 471 [in Russian]. DOI: 10.21883/JTF.2022.03.52142.242-21
21. Isaev I. M., Kostishin V. G., Korovushkin V. V., et al. Crystal Chemistry and Magnetic Properties of Polycrystalline Spinel Ferrites Li0.33Fe2.29Zn0.21Mn0.17O4 / Russ. J. Inorg. Chem. 2021. Vol. 66. N 12. P. 1917 – 1924. DOI: 10.1134/S0036023621120056
22. Pullar R. C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics / Prog. in Mater. Sci. 2012. Vol. 57. P. 1191 – 1334. DOI: 10.1016/j.pmatsci.2012.04.001
23. Narang S., Pubby K. Nickel Spinel Ferrites: a review / J. Magn. Magn. Mater. 2021. Vol. 519. P. 167163. DOI: 10.1016/j.jmmm.2020.167163
24. Vakhitov M. G., Klygach D. S., Vinnik D. A., Zhivulin V. E., Knyazev N. S. Microwave properties of aluminum-substituted barium hexaferrite BaFe12–xAlxO19 ceramics in the frequency range of 32 – 50 GHz / J. Alloys Compd. 2020. Vol. 816. P. 152682. DOI: 10.1016/j.jallcom.2019.152682
25. Letyuk L. M., Balbashov A. M., Krutogin D. G., et al. Technology of production of magnetoelectronic materials. — Moscow: Metallurgiya, 1994. — 416 p. [in Russian].
26. Bokov V. A. Physics of Magnetics. — St. Petersburg: Nevsky Dialekt, BHV-Peterburg, 2002. — 272 p. [in Russian].
27. Kochervinsky V. V. The properties and applications of fluorine-containing polymer films with piezo- and pyro-activity / Russ. chem. rev. 1994. Vol. 63. N 4. P. 367 – 371. DOI: 10.1070/RC1994v063n04ABEH000090
28. Aslam M., Kalyar M., Raza Z. Polyvinyl Alcohol: A Review of Research Status and Use of Polyvinyl Alcohol Based Nanocomposites / Polym. Eng. Sci. 2018. Vol. 58. P. 2119 – 2132. DOI: 10.1002/pen.24855
29. Bur A. J. Dielectric properties of polymers at microwave frequencies: a review / Polymer. 1985. Vol. 26. P. 963 – 977.
30. Wu Y., Han M., Tang Z., Deng L. Eddy current effect on the microwave permeability of Fe-based nanocrystalline flakes with different sizes / J. Appl. Phys. 2014. Vol. 115. P. 163902. DOI: 10.1063/1.4872237
31. Tsuoka T. Frequency dispersion of complex permeability in Mn-Zn and Ni-Zn spinel ferrites and their composite materials / J. Appl. Phys. 2003. Vol. 93. N 5. P. 2789 – 2796. DOI: 10.1063/1.1542651
Review
For citations:
Kostishin V.G., Shakirzyanov R.I., Isaev I.M., Salogub D.V. Study of radar absorbing characteristics of polymer composites with ferrite fillers. Industrial laboratory. Diagnostics of materials. 2022;88(6):31-45. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-6-31-45