Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

System fuzzy interval mathematics: the basis of tools of mathematical research methods

https://doi.org/10.26896/1028-6861-2022-88-7-5-7

About the Author

A. I. Orlov
Bauman Moscow State Technical University
Russian Federation

Alexander I. Orlov

5, 2-ya Baumanskaya ul., Moscow, 105005, Russia



References

1. Orlov A. I. The new paradigm of applied statistics / Zavod. Lab. Diagn. Mater. 2012. Vol. 78. N 1. Part I. P. 87 – 93 [in Russian].

2. Orlov A. I. The new paradigm of mathematical methods of research / Zavod. Lab. Diagn. Mater. 2015. Vol. 81. N 7. P. 5 [in Russian].

3. Orlov A. I. Statistics of NonNumeric Data in forty years (Review) / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 11. P. 69 – 84. DOI: 10.26896/1028-6861-2019-85-11-69-84

4. Orlov A. I. Organizational and economic modeling: textbook: In 3 parts. Part 1. Nonnumerical statistics. — Moscow: Izd. MGTU im. N. E. Baumana, 2009. — 542 p. [in Russian].

5. Orlov A. I., Lucenko E. V. System Fuzzy Interval Mathematics. — Krasnodar: KubGAU, 2014. — 600 p. [in Russian].

6. Orlov A. I., Lucenko E. V. Analysis of data, information and knowledge in system fuzzy interval mathematics. — Krasnodar: KubGAU, 2022. — 405 p. [in Russian].

7. Borel’ E. Probability and reliability / I. B. Pogrebyssky, B. V. Gnedenko, eds.. — Moscow: Fizmatgiz, 1961. — 120 p. [Russian translation].

8. Orlov A. I. Optimization Problems and Fuzzy Variables. — Moscow: Znanie, 1980. — 64 p. [in Russian].

9. Orlov A. I. Native scientific school in the field of organizational and economic modeling, econometrics and statistics / Kontrolling. 2019. N 73. P. 28 – 35 [in Russian].

10. Orlov A. I. System fuzzy interval mathematics — the basis of mathematics of the XXI century / Nauch. Zh. KubGAU. 2021. N 165. P. 111 – 130 [in Russian].


Review

For citations:


Orlov A.I. System fuzzy interval mathematics: the basis of tools of mathematical research methods. Industrial laboratory. Diagnostics of materials. 2022;88(7):5-7. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-7-5-7

Views: 328


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)