Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the fibrinogen structure by the method of small-angle synchrotron scattering

https://doi.org/10.26896/1028-6861-2022-88-7-43-47

Abstract

Fibrinogen is synthesized by human liver cells and is constantly present in the blood. Protein is the main factor of blood clotting and largely determines the blood viscosity. Any damage to a blood vessel or tissue in the body triggers hemostasis (blood clotting). Fibrinogen under the action of thrombin is converted into fibrin, an insoluble biopolymer, which is the basis of a blood clot that provides hemostasis. Apart of wound healing, fibrinogen is involved in the pathogenesis of malignant neoplasms. Fibrinogen labeled with 125I is used to diagnose thrombosis because it penetrates blood clots. We present the results of studying the structure of fibrinogen in human blood plasma using small-angle X-ray scattering (SAX). The SAX method, widely used in analysis of supra-atomic structures of substances, provides determination of the size of domains present in proteins, their shape, as well as the conformation of segments of chain macromolecules in the form of Gaussian and persistent chains. An important feature of the method is the possibility of studying biological objects in their natural state, without any special pretreatment. It is shown that globular domains of two sizes (diameters — 8.4 and 4 nm, respectively) are present in the structure of fibrinogen. The domains are coupled by polypeptide chains (α, β, γ) twisted in the form of spiral coils. The stiffness of the chains estimated as a persistent length was 3.1. The results obtained can be used in surgical practice and replacement therapy when creating fibrin glue as a hemostatic drug that stops bleeding with minimal invasiveness of intervention, and drugs that eliminate fibrinogen deficiency in the blood.

About the Authors

A. P. Petrakov
Pitirim Sorokin Syktyvkar State University
Russian Federation

Anatoly P. Petrakov

55, Octyabrsky pr., Syktyvkar, 167001, Russia



Ya. V. Zubavichus
Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis, RAS
Russian Federation

Yan V. Zubavichus

1, Nikolsky pr., Koltsovo, Novosibirsk obl., 630559, Russia



References

1. Jianhui S., Jichen Li, Hue S. Small-Angle X-ray scattering signatures of conformational heterogeneity and homogeneity of disordered protein ensembles / J. Phys. Chem. B. 2021. Vol. 125. N 24. P. 6451 – 6478. DOI: 10.1021/acs.jpcb.1c02453

2. Durgesh K., Richard E., Qingqiu H., Robert M., Edmund T., Alexander L., Mark W., Sol M. High-pressure small-angle X-ray scattering cell for biological solutions and soft materials / J. Appl. Crystallogr. 2021. Vol. 54. N 1. P. 1 – 12. DOI: 10.1107/S1600576720014752

3. Schroer M. A., Blanchet C. E., Gruzinov A. Yu., Grawert M. A., Brennich M. E., Hajizadeh N. R., Jeffries C. M., Svergun D. I. Smaller capillaries improve the small-angle X-ray scattering signal and sample consumption for biomacromolecular solutions / J. Synchrotron Radiation. 2018. Vol. 25. N 4. P. 1113 – 1122. DOI: 10.1107/S1600577518007907

4. He X. M., Carter D. C. Atomic structure and chemistry of human serum albumin / Nature. 1992. Vol. 358. P. 209 – 215. DOI: 10.1038/358209a0

5. Medved L. V., Gorkun O. V., Manyakov V. F., Belitser V. A. The role of fibrinogen αC-domains in the fibrin assembly process / Biomedical. J. 1985. Vol. 181. N 1. P. 109 – 112. DOI: 00145793/85

6. Meisburger S., Thomas W., Watkins M., Ando N. X-ray Scattering Studies of Protein Structural Dynamics / Chem. Rev. 2017. Vol. 117. N 12. P. 7615 – 7672. DOI: 10.1021/acs.chemrev.6b00790

7. Svergun D. I., Petoukhov M. V., Michel H. J., Koch M. H. J. Determination of domain structure of proteins from X-ray solution scattering / Biophys. J. 2001. Vol. 80. N 6. P. 2946 – 2953.

8. Jeffries C. M., Graewert M. A., Blanchet C. E., Langley D. B., Whitten A. E., Svergun D. I. Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments / Nature protocols. 2016. Vol. 11. N 11. P. 2122 – 2153.

9. Zhalyalov A. S., Balandina A. N., Kuprash A. D., Srivastava A., Shibeko A. M. The overview of fibrinolysis system contemporary concepts and of its disorders diagnostic methods / Vopr. Gematol./Onkol. Imunnopatol. Pediatrii. 2017. Vol. 16. N 1. P. 69 – 82 [in Russian]. DOI: 10.24287/1726-1708-2017-16-1-69-82

10. Zhmurov A., Brown A., Litvinov R., Dima R., Weisel J., Barsegov V. Mechanism of Fibrin(ogen) Forced Unfolding / Structure. 2011. Vol. 19. N 11. P. 1615 – 1624. DOI: 10.1016/j.str.2011.08.013

11. Kryukova A. E., Shpichka A. I., Konarev P. V., Volkov V. V., Timashev P. S., Asadchikov V. E. Shape determination of bovine fibrinogen in solution using small-angle scattering data / Crystallography. 2018. Vol. 63. N 6. P. 863 – 865 [in Russian]. DOI: 10.1134/S0023476118060206

12. Kollman J., Pandi L., Sawaya M., Riley M., Doolittle R. Crystal Structure of Human Fibrinogen / Biochemistry. 2009. Vol. 48. N 18. P. 3877 – 3886. DOI: 10.1021/bi802205g

13. Spraggon G., Everse S., Doolittle R. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin / Nature. 1997. Vol. 389. P. 455 – 462. DOI: 10.1038/38947

14. Svergun D. I., Feigin L. A. X-ray and neutron small-angle scattering. — Moscow: Nauka, 1986. — 384 p. [in Russian].

15. Zhulien R. Fractal aggregates / UFN. 1989. Vol. 157. Issue 2. P. 339 – 357 [in Russian].

16. Vasilevskaya T. N., Antropova T. V. Smoll-angle X-ray scattering studi of the structure of glassy nanoporous matrices / Fiz. Tv. Tela. 2009. Vol. 51. Issue 12. P. 2386 – 2393 [in Russian].

17. Weisel J. W., Litvinov R. I. Fibrin formation, structure and properties / Subcell Biochem. 2017. Vol. 82. N 1. P. 405 – 456. DOI: 10.1007/978-3-319-49674-0 13


Review

For citations:


Petrakov A.P., Zubavichus Ya.V. Study of the fibrinogen structure by the method of small-angle synchrotron scattering. Industrial laboratory. Diagnostics of materials. 2022;88(7):43-47. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-7-43-47

Views: 413


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)