

Study of the elastically deformed state of thin diamond plates
https://doi.org/10.26896/1028-6861-2022-88-7-73-78
Abstract
The development of laboratory technologies for growing high-quality diamond single crystals, as well as low thermal expansion of a diamond, make it possible to consider this material promising as an element of X-ray optics in designing free electron lasers (XFEL). Diamond crystal-spectrometers of various thicknesses and bending radii are also in demand. In this regard, the issues regarding the mechanical parameters of elastically deformed diamond single crystals require clarification, among them critical stresses in a deformed single crystal and the minimum bending radii for plates of certain geometry. The goal of the study is determination of the elastically deformed state of thin diamond plates with the parameters required in spectrometers for non-invasive diagnostics of X-ray free-electron laser (XFEL) spectra. The samples were cut from the IIa -type crystal of the highest quality grown by the temperature gradient method. Diamond plates with (110) and (111) crystallographic orientations were used in the experiments. The dependences of the stresses and bending radii on deformation value were obtained during bending thin diamond plates with a thickness of 20 μm. The experimental deformations did not exceed 1 mm. The minimum bending radii of thin diamond plates were also determined: for (111) direction — 5.6 mm, and for (110) direction — 4.5 mm. The Young’s moduli were 1198 GPa for (111) direction and 1034 GPa for (110) direction. Critical stresses during bending of thin diamond single crystals (resulting in their destruction) exceeded 2.4 GPa. The dependence of the bending radii of crystals on their thickness was calculated at a stress value of 2.0 GPa. The results of the study make it possible to calculate the allowable deformations for thin diamond plates of arbitrary shape and thickness. The data obtained will contribute to the improvement of modeling and the quality of production of curved spectrometers.
About the Authors
R. V. DigurovRussian Federation
Roman V. Digurov
7a, Tsentralnaya ul., Troitsk, Moscow, 108840, Russia
S. A. Terentyev
Russian Federation
Sergey A. Terentyev
7a, Tsentralnaya ul., Troitsk, Moscow, 108840, Russia
References
1. Eremets M. I., et al. The strength of diamond / Appl. Phys. Lett. 2005. Vol. 87. N 14. P. 141902. DOI: 10.1063/1.2061853
2. Bloomer Ch., Rehm G., Salter P., Newton M. Single Crystal CVD Diamond X-ray Beam Diagnostic with Embedded Graphitic Wire Electrodes / SRI2018 AIP Conf. Proc. 2019. Vol. 2054. P. 060058-1 – 060058-6. DOI: 10.1063/1.5084689
3. Chernykh S. V., Chernykh A. V., Tarelkin S. A., et al. High-Pressure High-Temperature Single-Crystal Diamond Type IIa Characterization for Particle Detectors/ Phys. Status Solidi A. 2020. Vol. 217. P. 1900888. DOI: 10.1002/PSSA.201900888
4. Blank V. D., Boldyrev K. N., Denisov V. N., et al. Electronic band structure of phosphorus-doped single crystal diamond: Dynamic Jahn-Teller distortion of the tetrahedral donor ground state / Phys. Rev. B. 2020. Vol 102. P. 115153. DOI: 10.1103/PhysRevB.102.115153
5. Polyakov S., Denisov V., Kuzmin N., et al. Characterization of top-quality type IIa synthetic diamonds for new X-ray optics / Diamond Relat. Mater. 2011. Vol. 20. P. 726 – 728. DOI: 10.1016/j.diamond.2011.03.012
6. Boesenberg U., Samoylova L., Roth Th., et al. X-ray spectrometer based on a bent diamond crystal for high repetition rate free-electron laser applications / Opt. Express. 2017. Vol. 25. N 3. P. 2852 – 2862. DOI: 10.1364/OE.25.002852
7. Gasilov S., Mittone A., Dos Santos Rolo T., et al. Refraction and ultra-smallangle scattering of Xrays in a single-crystal diamond compound refractive lens/ J. Synchrotron Radiat. 2017. Vol. 24. N 6. P. 1137 – 1145. DOI: 10.1107/S1600577517012772
8. Gudilin D. Yu. European X-ray free electron laser: femtosecond resolution and other unique opportunities / Lab. Proizv. 2020. Vol. 1. P. 58 – 68 [in Russian]. DOI: 10.32757/2619-0923.2020.1.11.58.68
9. Shvid’ko Y., Stoupin S., Blank V., Terentyev S. Near-100 % Bragg reflectivity of X-rays / Nat. Photonics. 2011. Vol. 5. P. 539 – 542. DOI: 10.1038/nphoton.2011.197
10. Mimura H., Yumoto H., Matsuyama S. Generation of 1020 Wcm-2 hard X-ray free electron laser pulses with two-stage reflective focusing system / Nat. Commun. 2014. Vol. 5. P. 3539. DOI: 10.1038/ncomms4539
11. Kaganer V., Petrov I., Samoylova L. X-ray diffraction from strongly bent crystal and spectroscopy of X-ray free-electron laser / Acta Crystallogr. Sect. A: Found. Adv. 2020. Vol. 76. N 1. P. 55 – 69. DOI: 10.1107/S2053273319014347
12. Terentyev S., Blank V., Kolodziej T., Shvyd’ko Y. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics / Rev. Sci. Instrum. 2016. Vol. 87. P. 125117. DOI: 10.1063/1.4973326
13. Kaganer V., Petrov I., Samoylova L. Resolution of a bent-crystal spectrometer for X-ray free-electron laser pulses: diamond versus silicon / Acta Crystallogr. Sect. A: Found. Adv. 2021. Vol. 77. N 77. P. 268 – 276. DOI: 10.1107/S2053273321003697
14. Tolentino H., Baudelet F., Dartyge E., et al. Aberration-free and harmonic-free optics for time-resolved X-ray absorption spectroscopy using synchrotron radiation / Nucl. Instrum. Methods Phys. Res. A. 1990. Vol. 289. P. 307. DOI: 10.1103/physrevb.45.8091
15. Sorokin B. P., Kvashnin G. M., Telichko A. V., et al. Elastic properties of synthetic diamond single crystal / Izv. Vuzov. Khimiya Khim. Tekhnol. 2013. Vol. 56. N 7. P. 50 – 52 [in Russian].
Review
For citations:
Digurov R.V., Terentyev S.A. Study of the elastically deformed state of thin diamond plates. Industrial laboratory. Diagnostics of materials. 2022;88(7):73-78. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-7-73-78