Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the properties of nanocomposites based on thermally-treated-polyacrylonitrile (review)

https://doi.org/10.26896/1028-6861-2022-88-8-35-46

Abstract

Organic semiconductors and novel carbon forms (fullerene, carbon nanotubes, carbon foam, graphene) promote synthesis of carbon nanocomposites with modified properties based on thermally treated polyacrylonitrile (TPAN) that comprises curved (spherical, ring-like, and tube-like) carbon planes. Here we present a review of the studies regarding the properties of TPAN-based nanocomposites. The features of the IR irradiation procedure with a synergetic effect and the mechanism of polyacrylonitrile (PAN) transformation into carbon nanocrystalline material (CNM) have been analyzed. The developed method is promising for the synthesis of luminescent carbon nanostructures and biocompatible carbon nanostructures with high sensitivity to pH medium; metal-polymer nanocomposites (Ag/PAN, Cu/PAN, Fe3O4/TPAN), which can be used in electronics, catalysis, and in water purification from heavy metals, etc. The results obtained may be used to synthesize TPAN-based novel nanocomposites with modified properties.

About the Authors

V. V. Kozlov
Topchiev Institute of Petrochemical Synthesis, RAS; National University of Science and Technology
Russian Federation

Vladimir V. Kozlov

29, Leninsky pr., Moscow, 119991;

4, Leninsky pr., Moscow, 119991



V. G. Kostishin
National University of Science and Technology
Russian Federation

Vladimir G. Kostishin

4, Leninsky pr., Moscow, 119991



M. A. Sitnov
National University of Science and Technology
Russian Federation

Mihail A. Sitnov

4, Leninsky pr., Moscow, 119991



B. S. Godaev
National University of Science and Technology
Russian Federation

Bain S. Godaev

4, Leninsky pr., Moscow, 119991



References

1. Makio Naito, Toyokazu Yokoyama, Kouhei Hosokawa, Kiyoshi Nogi. Nanoparticle Technology Handbook. — Elsevier, 2018. — 904 p.

2. Raz Jelinek. Nanoparticles. — De Gruyter, 2015 — 283 p. DOI: 10.1515/9783110330038

3. Shchuka A. A. Nanoelectronics. — Moscow: Binom. Laboratoriya znaniy, 2015. — 342 p. [in Russian].

4. Andrievskiy P. A. Basics of nanostructural material science. Possibilities and problems. — Moscow: Binom. Laboratoriya znaniy, 2020. — 255 p. [in Russian].

5. Rakov E. G. Inorganic materials. — Moscow: Binom. Laboratoriya znaniy, 2020. — 480 p. [in Russian].

6. Pomogaylo A. D., Rosenberg A. S., Uflyand I. E. Nanoparticles of metals in polymers. — Moscow: Khimiya, 2000. — 672 p. [in Russian].

7. Nguyen T. K. Thanh. Magnetic Nanoparticles. — Boca Raton, 2012 — 616 p. DOI: 10.1201/b11760

8. Maneesha Pande, Ashok N. Bhaskarwar. Nanoparticles. Preparation and Characterization. — Momentum Press, 2016. — 206 p.

9. Kozhitov L. V., Emelyanov S. G., Kosushkin V. G., Strel’chenko S. S., Parchomenko Yu. N., Kozlov V. V. Technology of micro- and nanoelectronics materials. — Kursk: YuZGU, 2012. — 862 p. [in Russian].

10. Kozlov V. V., Gorichev I. G., Petrov V. S., Layner Yu. A. Simulation of process kinetics under the synthesis of Cu/C nanocomposite / Khim. Tekhnol. 2008. N 11. P. 556–559 [in Russian].

11. Novotortsev V. M., Kozlov V. V., Korolev Yu. M., Karpacheva G. P., Kozhitov L. V. Forming nanoparticles of novel metastable copper compound in heterogeneous system copper acetate hydrate/polyacrylonitrile / Zh. Neorg. Khimii. 2008. Vol. 53. N 7. P. 1087–1089 [in Russian].

12. Kozlov V. V., Kozhitov L. V., Krapuchin V. V., Zaporotskova I. V., Davletova O. A., Muratov D. G. Proton conductivity of carbon nanostructures based on pyrolyzed polyacrylonitrile and its practical using / Izv. Vuzov. 2008. N 1. P. 59–64 [in Russian].

13. Kalashnik A. T., Smirnova T. N., Chernova O. P., Kozlov V. V. Properties and structure of polyacrylonitrile fibres / Vysokomol. Soed. A. 2010. Vol. 52. N 11. P. 2038 – 2043 [in Russian].

14. Kozhitov L. V., Kozlov V. V., Kostikova A. V. Novel metal-carbon nanocomposites and carbon nanocrystalline material with perspective properties for developing electronics / Izv. Vuzov. 2012. N 3. P. 59 – 67 [in Russian]. DOI: 10.1016/j.carbon.2016.01.104

15. Zemtsov L. M., Karpacheva G. P., Efimov O. N., Kozlov V. V., Bagdasarova K. A., Muratov D. G. Structure and Properties of Infra-Red-Irradiated Polyacrylonitrile and Its Composites / Chemine Technologija. 2005. N 1(35). P. 25–28.

16. Vasilev A., Efimov M., Bondarenko G., Kozlov V., Dzidziguri E., Karpacheva G. Thermal behavior of chitosan as a carbon material precursor under IR radiation / IOP Conference Series: Materials Science and Engineering. 2019. Vol. 693. 012002. DOI: 10.1088/1757-899X/693/1/012002

17. Tabarov Ph. S., Astachov M. V., Kalashnik A. T., Klimont A. A., Kozlov V. V., Galimzjanov P. P. Activation of carbon nanofibers and their application as electrode materials for supercapacitors / Zh. Prikl. Khimii. 2019. Vol. 92. Issue 9. P. 1188–1196 [in Russian]. DOI: 10.1134/S0044461819090123

18. Vet N. Ch., Kostikova A. V., Kozlov V. V. Stability of chemical structure of thermally treated polyacrylonitrile under IR heating / Nanomater. Nanostrukt. 2015. Vol. 6. N 1. P. 20–24 [in Russian].

19. Vet N. Ch., Zorin S. M., Kozlov V. V., Tkhyon N. K. Studying oxidation processes of polyacrylonitrile under IR heating / Élektromagn. Volny Élektron. Sist. 2014. N 2. P. 57–61 [in Russian].

20. Kozitov L. V., V’et N. Ch., Kozlov V. V. The structure and content peculiarities of carbon material obtained under the polyacrylonitrile infra-red heating / Journal of Nano- and Electronic Physics. 2013. Vol. 5. N 4. 04020-1 – 04020-3.

21. Kozhitov L. V., Kostikova A. V., Kozlov V. V., Bulatov M. F. The FeNi3/C Nanocomposite Formation from the Composite of Fe and Ni Salts and Polyacrylonitrile under IR-Heating / J. Nanoelectron. Optoelectron. 2012. Vol. 7. N 4. P. 419–422. DOI: 10.1166/jno.2012.1322

22. Kozhitov L. V., Kostikova A. V., Kozlov V. V., Tarala V. A. Structural peculiarities of nanocomposite FeNi3/C obtained under IR heating / Izv. Vuzov. 2012. N 2. P. 61–64 [in Russian]. DOI: 10.17073/1609-3577-2012-2-61-64

23. Morris E. A., Weisenberger M. C., Abdallah M. G., et al. High performance carbon fibers from very high molecular weight polyacrylonitrile precursors / Carbon. 2016. Vol. 101. P. 245–252. DOI: 10.1016/j.carbon.2016.01.104

24. Kazaryan S. A., Starodubtsev N. F. Study of the optical and luminescent properties of carbon nanoparticles using the microphotoluminescence method / Perspekt. Mater. 2019. N 8. P. 5–21 [in Russian]. DOI: 10.30791/1028-978X-2019-8-5-21

25. Ghorpade R. V., Cho D. W., Hong S. C. Effect of controlled tacticity of polyacrylonitrile (co)polymers on their thermal oxidative stabilization behaviors and the properties of resulting carbon films / Carbon. 2017. Vol. 121. P. 502–511. DOI: 10.1016/j.carbon.2017.06.015

26. Zhao R., Sun P., Liu R., Ding Z. Influence of heating procedures on the surface structure of stabilized polyacrylonitrile fibers / Applied Surface Science. 2018. Vol. 433. P. 321–328. DOI: 10.1016/j.apsusc.2017.09.252

27. Sha Y., Liu W., Li1 Y., Cao W. Formation Mechanism of Skin-Core Chemical Structure within Stabilized Polyacrylonitrile Monofilaments / Nanoscale Research Letters. 2019. Vol. 14. P. 1–7. DOI: 10.1186/s11671-019-2926-x

28. Szepcsika B., Pukanszkya B. The mechanism of thermal stabilization of polyacrylonitrile / Thermochimica Acta. 2019. Vol. 671. P. 200–208. DOI: 10.1016/j.polymdegradstab.2007.03.023

29. Nunna S., Naebe M., Hameed N., Creighton C., Naghashian S., Jennings M., Atkiss S., Setty M., Fox B. Investigation of progress of reactions and evolution of radial heterogeneity in the initial stage of thermal stabilization of PAN precursor fibres / Polym. Degrad. Stab. 2016. Vol. 125. P. 105–114. DOI: 10.1016/j.polymdegradstab.2016.01.008

30. Takuya Tsuzuki. Mechanochemical synthesis of nanoparticles. — Elsevier, 2022. — 204 p. DOI: 10.1016/B978-0-12-822425-0.00058-0

31. Shilpi Srivastava, Atul Bhargava. Green Synthesis of Nanoparticles. — Springer, 2022. — 75 p. DOI: 10.1007/978-981-16-7106-7_4

32. Neelu Chouhan. Silver Nanoparticles: Synthesis, Characterization and Applications. — IntechOpen, 2018. — 288 p. DOI: 10.5772/intechopen.75611

33. Mohammad Javed Ansari, Mustafa M. Kadhim, Baydaa Abed Hussein, Holya A. Lafta, Ehsan Kianfar. Synthesis and Stability of Magnetic Nanoparticles / BioNanoSci. 2022. DOI: 10.1007/s12668-022-00947-5

34. Efimov A. A., Arsenov P. V., Borisov V. I., et al. Synthesis of Nanoparticles by Spark Discharge as a Facile and Versatile Technique of Preparing Highly Conductive Pt Nano-Ink for Printed Electronics / Nanomaterials. 2021. Vol. 11. N 1. 234. DOI: 10.3390/nano11010234

35. Shabanova N. A., Sarkisov P. D. Sol-gel technology. Nanodispersion silica. — Moscow: Binom. Laboratoriya znaniy, 2015. — 328 p. [in Russian].

36. Uma Shanker, Chaudhery Hussain, Manviri Rani. Green Functionalized Nanomaterials for Environmental Applications. — Elsevier, 2021. — 603 p. DOI: 10.1016/C2019-0-04822-4

37. Ramiro Muñiz-Diaz, Sagrario Yadira Gutiérrez de la Rosa, Óscar Gutiérrez Coronado, Rita Patakfalvi. Biogenic synthesis of platinum nanoparticles / Chem. Pap. 2022. DOI: 10.1007/s11696-021-01970-8

38. Belete Asefa Aragaw, Melisew Tadele Alula, Stephen Majoni, Cecil K. King’ondu. Chemical synthesis of silver nanoparticles. — Elsevier, 2022. — 53 p. DOI: 10.1016/B978-0-12-824508-8.00017-4

39. Kangkana Banerjee, Ravishankar Rai Vittal. Silver nanoparticles synthesis mechanisms. — Elsevier, 2022. — 625 p. DOI: 10.1016/B978-0-12-824508-8.00025-3

40. Ibticem Ayadi, Foued Ben Ayed. Mechanical optimization of the composite biomaterial based on the tricalcium phosphate, titania and magnesium fluoride / Journal of the Mechanical Behavior of Biomedical Materials. 2016. Vol. 60. P. 568–580. DOI: 10.1016/j.jmbbm.2016.03.020

41. Raz Jelinek. Nanoparticles. — De Gruyter, 2015 — 283 p. DOI: 10.1515/9783110330038

42. Jeevanandam J., Barhoum A., Chan Y., Dufresne A., Danquah M. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations / Beilstein J. Nanotechnol. 2018. N 9. P. 1050–1074. DOI: 10.3762/bjnano.9.98

43. Maenosomo S., Okubo T., Yamaguchi Y. Overview of nanoparticle array formation by wet coating / J. of Nanoparticle Research. 2003. Vol. 5. P. 5–15. DOI: 10.1023/A:1024418931756

44. Malik H., Qureshi U., Muqeet M., Mahar R., Ahmed F., Khatri Z. Removal of lead from aqueous solution using polyacrylonitrile/magnetite nanofibers / Environmental Science and Pollution Research. 2018. Vol. 25. P. 3557–3564. DOI: 10.1007/s11356-017-0706-7

45. Silinsh E. A., Eydus Ya. A. Catalytic influence of IR radiation on chemical transformations / Kinet. Kataliz. 1970. Vol. XI. Issue 3. P. 555–560 [in Russian].

46. Kozlov V. V., Korolev Yu. M., Karpacheva G. P. Structural transformations of composite based on polyacrylonitrile and fullerene C60 under IR radiation / Vysokomolek. Soed. A. 1999. Vol. 41. N 5. P. 836–840 [in Russian].

47. Kozlov V. V., Godaev B. S., Korovushkin V. V., Karpacheva G. P., Vasilev A. A., Durov N. M. On synthesis of Fe3O4/C nanocomposite based on polyacrylonitrile and FeCl2 • 4H2O under thermal treatment in air / EESJ East european scientific journal (Wschodnioeuropejskie Czasopismo Naukowe). 2018. Part 1. N 7(35). P. 57–62 [in Russian].

48. Kozlov V. V., Vasilev A. A., Gorichev I. G., Kalashnik A. T., Kostishin V. G., Tabarov F. S., Godaev B. S., Sitnov M. A. Study of the Properties for Stabilized Polyacrylonitrile Thermally Treated in Air / Zavod. lab. Diagnost. mat. 2021. Vol. 87. N 7. P. 30–37 [in Russian]. DOI: 10.26896/1028-6861-2021-87-7-30-37

49. Zhuravleva T. S., Kovalenko S. A., Lozovik Yu. E., Matveets Yu. A., Farztdinov V. M., Dobryakov A. L., Nazarenko A. V., Zemtsov L. M., Kozlov V. V., Karpacheva G. P. Ultrafast Optical Response of IR Treated Polyacrylonitrile Films / Polymers for advanced technologies. 1998. Vol. 9. N 10–11. P. 613–618. DOI: 10/11<613::AID-PAT825>3.0.CO; 2-J

50. Moore J., Lochner E., Ramsey C., Dalal N., Stiegman A. Transparent, Superparamagnetic [FeIII(CN)6]-Silica Nanocomposites with Tunable Photomagnetism / Angew. Chem. Int. Ed. 2003. Vol. 42. N 24. P. 2741–2743. DOI: 10.1002/anie.200250409


Review

For citations:


Kozlov V.V., Kostishin V.G., Sitnov M.A., Godaev B.S. Study of the properties of nanocomposites based on thermally-treated-polyacrylonitrile (review). Industrial laboratory. Diagnostics of materials. 2022;88(8):35-46. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-8-35-46

Views: 504


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)