Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The features of the evaluation of the results of experimental data in interlaboratory comparison tests for low-cycle fatigue

https://doi.org/10.26896/1028-6861-2022-88-8-47-58

Abstract

Improving the efficiency of assessing the results of low-cycle fatigue (LCF) test in the course of interlaboratory comparison tests (ICT) requires a reduction of the uncertainty associated with a number of random factors independent on the quality of testing and qualification of testing laboratories. Those factors are attributed to a random nature of the initiation and development of the fatigue fracture due to the inhomogeneity of the macro- and microstructure of the material, the state of the sample surface, stress concentrator, etc. A method for evaluating the results of LCF tests at ICT is presented. The method is implemented on the basis of linear regression analysis of experimental values of the mean and standard deviation of the logarithm of the durability at a given stress level. The features of evaluating the results of experimental data of interlaboratory comparison tests for low-cycle fatigue are presented. We propose to use the median estimate of the logarithm of fatigue life (corresponding to a given level (amplitude) of stresses obtained from the median fatigue curve constructed from the results of statistical analysis including regression analysis of the variances of experimental data) as an assigned value for assessing the characteristics of functioning of the laboratories participating in the ICT. The assigned value and estimates of the performance of laboratories is obtained using the median fatigue curve, which is plotted depending on the number of participants in the ICT. With a small number of participants, the median low-cycle fatigue curve is plotted according to the test results obtained by the expert laboratory, whereas for a sufficiently large number of participants according to the test results combined for all laboratories participating in the ICT.

About the Author

N. Yu. Podzhivotov
SIC «Kurchatov Institute» – VIAM
Russian Federation

Nikolay Yu. Podzhivotov

17, ul. Radio, Moscow, 105005



References

1. Kablov E. N., Podzhivotov N. Yu., Lutsenko A. N. About need for creation of uniform information and analysis center of aviation materials of the Russian Federation / Probl. Mashinostr. Avtom. 2019. N 3. P. 28–34 [in Russian].

2. Kablov E. N. The strategic directions of development of materials and technologies of their processing for the period till 2030 / Aviats. Mater. Tekhnol. 2012. N S. P. 7–17 [in Russian].

3. Kablov E. N. New generation materials represent the basis for innovations, technological leadership and national security of Russia / Intellekt Tekhnol. 2016. N 2(14). P. 16–21 [in Russian].

4. Kablov E. N., Grinevich A. V., Erasov V. S. Strength properties of metallic aviation materials and their calculated values / Aviation materials. — Moscow: VIAM, 2007. P. 370–379 [in Russian].

5. Podzhivotov N. Yu., Erasov V. S., Oreshko E. I. About the methods of an assessment of static durability of the materials received by means of additive technological processes / Komment. Standart. TU Sert. Pril. Zh. «Vse Mater. Éntsikl. Sprav». 2017. N 10. P. 54–60 [in Russian].

6. Grinevich A. V., Lutsenko A. N., Karimova S. A. Rated characteristics of metal materials taking into account humidity / Tr. VIAM. Élektron. Nauch.-Tekhn. Zh. 2014. N 7(19). P. 10 [in Russian]. DOI: 10.18577/2307-6046-2014-0-7-10-10

7. Erasov V. S., Avtaev V. V., Oreshko E. I., Yakovlev N. O. Strain-controlled testing advantages at static tension and repeated-static tension / Tr. VIAM. Élektron. Nauch.-Tekhn. Zh. 2018. N 9(69). P. 92–104 [in Russian]. DOI: 10.18577/2307-6046-2018-0-9-92-104

8. Podzhivotov N. Yu. On optimization of approach to substantiation of minimal test number of aviation structural materials / Vse Mater. Éntsikl. Sprav. 2021. N 1. P. 28 – 35 [in Russian]. DOI: 10.31044/1994-6260-2021-0-1-28-35

9. Podzhivotov N. Yu. Express method of a comparative assessment properties levels of materials / Tr. VIAM. Élektron. Nauch.-Tekhn. Zh. 2019. N 10(82). P. 10 – 11 [in Russian]. DOI: 10.18577/2307-6046-2019-0-10-11

10. Kolpakova E. K., Khuzagaleeva R. K., Stepanovskikh V. V. Interlaboratory comparative tests of metallurgical materials / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 1(II). P. 23–27 [in Russian]. DOI: 10.26896/1028-6861-2018-84-1(II)-23-27

11. Chepkova I. F., Kreynin S. V., Ponomareva O. I. Interlaboratory comparisons as evidence base for the competence of laboratories / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 2. P. 70–72 [in Russian]. DOI: 10.26896/1028-6861-2018-84-2-70-72

12. Stepnov M. N. Statistical methods for processing the results of mechanical tests: a reference book. — Moscow: Mashinostroenie, 1985. — 232 p. [in Russian].

13. Konovalov V. V., Dubinskii S. V., Makarov A. D., Dotsenko A. M. Research of correlation dependencies between mechanical properties of aviation materials / Aviats. Mater. Tekhnol. 2018. N 2(51). P. 40–46 [in Russian]. DOI: 10.18577/2071-9140-2018-0-2-40-46

14. Pachurin G. V., Guschin A. N., Galkin V. V., Pachurin V. G. Theoretical foundations for increasing the operational durability of stamped metal products: a tutorial. — N. Novgorod: NGTU, 2006. — 176 p. [in Russian].

15. Makhutov N. A., Gadenin M. M. Unification of the calculation methods and tests for strength, life time and crack resistance / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 10. P. 47–54 [in Russian]. DOI: 10.26896/1028-6861-2019-85-10-47-54


Review

For citations:


Podzhivotov N.Yu. The features of the evaluation of the results of experimental data in interlaboratory comparison tests for low-cycle fatigue. Industrial laboratory. Diagnostics of materials. 2022;88(8):47-58. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-8-47-58

Views: 281


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)