Preview

Industrial laboratory. Diagnostics of materials

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Furnace ion source with electron ionization for calibrating a spectrometer for precise determination of masses of superheavy elements

https://doi.org/10.26896/1028-6861-2022-88-9-7-15

Abstract

Precise determination of the isotope masses of superheavy elements obtained by the complete fusion of 48Ca+ ions with Au, Pb, Bi, U, and Pu targets can provide valuable information on the mechanisms of nuclear reactions leading to the formation of these elements. A specialized multi-turn time-of-flight mass spectrometer is to be used to match the goal. The source of the target isotopes is a DC-280 cyclotron, a «factory of superheavy elements» at the Joint Institute for Nuclear Research (JINR, Dubna, Russia). The point of the problem is that ions of superheavy elements are formed quite rarely even in the specialized accelerator of JINR: during the last experiment, the frequency of their appearance was up to 10 events per day. Precise determination of the mass number requires comparing the time of flight of a superheavy ion through a mass analyzer with the same time for a calibrant ion, the mass number and charge of which are precisely known a priori from the process of its formation. Implementation of such a mass spectrometric analysis required the development of an ion source capable of stable operation for a long time. To solve the problem, a number of ion sources were considered. The choice of an ion source with electron ionization is substantiated. A source with a crucible in which the calibrant evaporates during heating was proposed and tested. Various substances (PbBr2, Nd, C60, fullerene soot) were considered as a calibrant. The mass spectra of these compounds are presented, namely, the spectrum of neodymium compounds and the mass spectrum of fullerene soot. It is shown that the use of fullerene soot is optimal, since the mass spectrum of fullerene soot contains ions in the range of mass numbers from 12 to 800 and higher. Moreover, the mass spectrum of fullerene soot contains many peaks in the mass number region of interest 275 – 300 a.m.u. It has been experimentally shown that the ion intensities within the indicated range differ by less than an order of magnitude which makes the use of fullerene soot a standard sample for calibration of a high-resolution time-of-flight mass spectrometer.

About the Authors

A. A. Dyachenko
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Artyem A. Dyachenko

31 – 33A, Ivana Chernykh ul., St. Petersburg, 198095



I. A. Gromov
Ioffe Physical Technical Institute of the Russian Academy of Sciences
Russian Federation

Ivan A. Gromov

26, Polytekhnicheskaya ul., St. Petersburg, 194021



M. Z. Muradymov
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Marat Z. Muradymov

31 – 33A, Ivana Chernykh ul., St. Petersburg, 198095



O. A. Belyaeva
LLC «MS-Bio»
Russian Federation

Olga A. Belyaeva

17/5D, Zheleznovodskaya ul., St. Petersburg, 199155



N. R. Gall
Ioffe Physical Technical Institute of the Russian Academy of Sciences
Russian Federation

Nickolay R. Gall

26, Polytekhnicheskaya ul., St. Petersburg, 194021



M. I. Yavor
Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Mikhail I. Yavor

31 – 33A, Ivana Chernykh ul., St. Petersburg, 198095



A. M. Rodin
Joint Institute for Nuclear Research
Russian Federation

Alexander M. Rodin

6, Zholio-Kyuri ul., Dubna, Moscow obl., 141980



L. Krupa
Joint Institute for Nuclear Research
Russian Federation

Luboš Krupa

6, Zholio-Kyuri ul., Dubna, Moscow obl., 141980



A. V. Karpov
Joint Institute for Nuclear Research
Russian Federation

Alexander V. Karpov

6, Zholio-Kyuri ul., Dubna, Moscow obl., 141980



References

1. Oganessian Yu. Heaviest nuclei from 48Ca-induced reactions / J. Phys. G: Nucl. Part. Phys. 2007. Vol. 34. N 4. P. R165 – R242. DOI: 10.1088/0954-3899/34/4/R01

2. Oganessian Yu. Ts., Utyonkov V. K. Super-heavy element research / Rep. Prog. Phys. 2015. Vol. 78. N 3. 036301. DOI: 10.1088/0034-4885/78/3/036301

3. Düllmann C. E., Herzberg R.-D., Nazarewicz W., Oganessian Yu. (Eds.). Special Issue on Superheavy Elements / Nucl. Phys. A. 2015. Vol. 944. P. 1 – 690.

4. Saiko V., Karpov A. Multinucleon transfer as a method for production of new heavy neutron-enriched isotopes of transuranium elements / Eur. Phys. J. A. 2022. Vol. 58. Article 41. DOI: 10.1140/epja/s10050-022-00688-9

5. Dmitriev S., Itkis M., Oganessian Yu. Status and perspectives of the Dubna superheavy element factory / Proc. of EPJ Web Conf. 2016. Vol. 131. P. 08001. DOI: 10.1051/epjconf/201613108001

6. Oganessian Yu. Ts., Utyonkov V. K., Popeko A. G., et al. DGFRS-2 — A gas-filled recoil separator for the Dubna Super Heavy Element Factory / Nucl. Instr. Methods Phys. Res. A. 2022. Vol. 1033. 166640. DOI: 10.1016/j.nima.2022.166640

7. Utyonkov V. K., Brewer N. T., Oganessian Yu. Ts., et al. Neutron-deficient superheavy nuclei obtained in the 240Pu + 48Ca reaction / Phys. Rev. C. 2018. Vol. 97. 014320. DOI: 10.1103/PhysRevC.97.014320

8. Johnson J. B. The Schottky Effect In Low Frequency Circuits / Phys. Rev. 1925. Vol. 26. N 1. P. 71 – 85. DOI: 10.1103/PhysRev.26.71

9. Schroeder M. Fractals, chaos, power laws. — Moscow: Regulyarnaya i khaoticheskaya dinamika, 2005. — 528 p. [in Russian].

10. Vedeneev V. Yu., Rodin A. M., Krupa L., et al. Cross sections for the formation of evaporative residues from the complete fusion reactions 144Sm(40Ar, xn)184 – xHg, 148Sm(36Ar, xn)184 – xHg, and 144Nd(40Ca, xn)184 – xHg / Izv. RAN. Seriya Fiz. 2020. Vol. 84. N 4. P. 611 – 615 [in Russian]. DOI: 10.31857/S0367676520040377

11. Briselet R., Theisen Ch., Vandebrouck M., et al. Production cross section and decay study of 243Es and 249Md / Phys. Rev. C. 2019. Vol. 99. 024614. DOI: 10.1103/PhysRevC.99.024614

12. Eremin A. V., Chepigin V. I., Itkis M. G., et al. Production of heavy evaporation residues in the reactions indused by an extracted 48Ca beam on a 208Pb target / JINR Rapid Commun. 1998. N 6. P. 92 – 98 [in Russian].

13. Gaggeler H. W., Jost D. T., Turler A., et al. Cold fusion reactions with 48Ca / Nucl. Phys. A. 1989. Vol. 502. P. 561 – 570. DOI: 10.1016/0375-9474(89)90689-1

14. Oganessian Yu. Ts., Utyonkov V. K., Lobanov Yu. V., et al. Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233, 238U, 242Pu, and 248Cm + 48Ca / Phys. Rev. C. 2004. Vol. 70. 064609. DOI: 10.1103/PhysRevC.70.064609

15. Oganessian Yu. Ts., Utyonkov V. K., Lobanov Yu. V., et al. Measurements of cross sections for the fusion-evaporation reactions 244Pu(48Ca, xn)292 – x114 and 245Cm(48Ca, xn)293 – x116 / Phys. Rev. C. 2004. Vol. 69. 054607. DOI: 10.1103/PhysRevC.69.054607

16. Burylev B. P., Moisov L. P., Kritskaya E. B., Kostenko N. B. Thermodynamic properties of PbBr2 – CdBr2 and PbBr2 – CdBr2 – KBr melts / Russ. J. Phys. Chem. 2003. Vol. 77. N 12. P. 2076 – 2078.

17. Hastie J. W., Bloom H., Morrison J. D. Electron-Impact Studies of PbCl2, PbBr2, and PbClBr / J. Chem. Phys. 1967. Vol. 47. P. 1580. DOI: 10.1063/1.1712136

18. Gall L. N. On the optimization criterion for ion sources with electron impact ionization / Zh. Tekh. Fiz. 1982. Vol. 52. P. 2086 – 2092 [in Russian].

19. Al-Matar H. M., Badawy S. M. A Study on Mass Spectrometry of Methylated [60] Fullerenes Using the «In-beam» Electron Impact Technique / J. Am. Soc. Mass Spectrom. 2005. Vol. 16. N 8. P. 1311 – 1315. DOI: 10.1016/j.jasms.2005.03.022

20. Lebedev A. T. Mass spectrometry in organic chemistry. — Moscow: BINOM. Laboratoriya znanii, 2003. — 493 p. [in Russian].

21. Afanas’ev D. V., Baranov G. A., Bogdanov A. A., et al. 13C enrichment of fullerenes / Tech. Phys. Lett. 1999. Vol. 25. N 9. P. 722 – 724. DOI: 10.1134/1.1262613


Review

For citations:


Dyachenko A.A., Gromov I.A., Muradymov M.Z., Belyaeva O.A., Gall N.R., Yavor M.I., Rodin A.M., Krupa L., Karpov A.V. Furnace ion source with electron ionization for calibrating a spectrometer for precise determination of masses of superheavy elements. Industrial laboratory. Diagnostics of materials. 2022;88(9):7-15. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-9-7-15

Views: 392


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)