

Study of carbon dioxide corrosion products by the X-ray diffraction method
https://doi.org/10.26896/1028-6861-2022-88-9-35-41
Abstract
The internal carbon dioxide corrosion is one of the most common types of corrosion in the gas fields development. The results of studying the composition of carbon dioxide corrosion products by X-ray diffraction method are presented. FeCO3 is the main product resulting from dissolution of steel upon carbon dioxide corrosion. Siderite is characterized by the phenomenon of isomorphism in the crystal structure (a change in the chemical composition of the phase at the same crystal structure). In this case, some of the iron ions in FeCO3 can be replaced by manganese, calcium, and magnesium ions. It is shown that phases of the precipitates of non-stoichiometric composition (CaxMgyMnzFe)CO3 thus formed are poorly crystallized which is attributed to the presence of defects in the crystal structure. They will exhibit inferior protective properties compared to stoichiometric FeCO3. The film of FeCO3 is packed, uniformly distributed and tightly adhering to the steel surface. An analysis of the diffraction patterns revealed a good crystallization of FeCO3. The shape of FeCO3 particles tends to a regular hexagonal habitus. The results obtained can be used in studying the resistance of corrosion products formed on the internal surfaces of gas production equipment under aggressive conditions in the presence of CO2 in produced and transported hydrocarbons.
About the Authors
R. K. VagapovRussian Federation
Ruslan K. Vagapov
Proektiruemy proezd 5537, vl. 15, str. 1, Razvilka, s.p. Razvilkovskoe, Leninsky r-n, Moscovskaya obl., 142717
O. G. Mikhalkina
Russian Federation
Olga G. Mikhalkina
Proektiruemy proezd 5537, vl. 15, str. 1, Razvilka, s.p. Razvilkovskoe, Leninsky r-n, Moscovskaya obl., 142717
References
1. Kantyukov R. R., Zapevalov D. N., Vagapov R. K. Media corrosiveness and materials resistance at presence of aggressive carbon dioxide / Izv. Vuzov. Ferrous Metallurgy. 2021. Vol. 64. N 11. P. 793 – 801. DOI: 10.17073/0368-0797-2021-11-793-801
2. Vagapov R. K. Resistance of Steels under Operating Conditions of Gas Fields Containing Aggressive CO2 in the Produced Media / Inorg. Mater. Appl. Res. 2022. Vol. 13. N 1. P. 240 – 245. DOI: 10.1134/S2075113322010397
3. Zapevalov D. N., Vagapov R. K., Mikhalkina O. G. Influence of reservoir conditions on the corrosiveness of environment and protection against internal corrosion at gas production facilities/ Vesti Gazovoy Nauki. 2021. Vol. 47. N 2. P. 177 – 189 [in Russian].
4. Barker R., Burkle D., Charpentier T., et al. A review of iron carbonate (FeCO3) formation in the oil and gas industry / Corrosion Science. 2018. Vol. 142. P. 312 – 341. DOI: 10.1016/j.corsci.2018.07.021
5. Sun W., Nešić S. Kinetics of Corrosion Layer Formation. Part 1. Iron Carbonate Layers in Carbon Dioxide Corrosion / Corrosion. 2008. Vol. 64. P. 334 – 346. DOI: 10.5006/1.3278477
6. Vagapov R. K., Mikhalkina O. G., Zapevalov D. N. Use of X-ray diffraction and chromatomass spectrometry for assessment of corrosion and inhibitor protection at facilities of gas fields / Korroziya Mater. Zashchita. 2022. N 1. P. 37 – 48 [in Russian]. DOI: 10.31044/1813-7016-2022-0-1-37-48
7. Rizzo R., Baier S., Rogowska M., Ambat R. An electrochemical and X-ray computed tomography investigation of the effect of temperature on CO2 corrosion of 1Cr carbon steel / Corrosion Science. 2020. Vol. 166. Art. 108471. DOI: 10.1016/j.corsci.2020.108471
8. Vagapov R. K., Zapevalov D. N., Ibatullin K. A. Study of corrosion of gas production infrastructure objects in the presence of CO2 by the methods of analytical control / Zavod. Lab. Diagn. Mater. 2020. Vol. 86. N 10. P. 23 – 30 [in Russian]. DOI: 10.26896/1028-6861-2020-86-10-23-30
9. Shayegani M., Ghorbani M., Afshar A., et al. Modelling of carbon dioxide corrosion of steel with iron carbonate precipitation / Corrosion Eng. Sci. Technol. 2009. Vol. 44. P. 128 – 136. DOI: 10.1179/174327808X286338
10. Rizzo R., Gupta S., Rogowska M., et al. Corrosion of carbon steel under CO2 conditions: Effect of CaCO3 precipitation on the stability of the FeCO3 protective layer / Corrosion Science. 2020. Vol. 162. Art. 108214. DOI: 10.1016/j.corsci.2019.108214
11. Wu M., Zhang S., Hou L., et al. Corrosion behavior of carbon steel in chloride and bicarbonate ion-enriched and CO2-saturated solutions / Materials and Corrosion. 2020. Vol. 71. P. 1533 – 1546. DOI: 10.1002/maco.202011587
12. Zhang S., Hou L., Du H., et al. A study on the interaction between chloride ions and CO2 towards carbon steel corrosion / Corrosion Science. 2020. Vol. 167. Art. 108531. DOI: 10.1016/j.corsci.2020.108531
13. Santos B. A. F., Souza R. C., Serenario M. E. D., et al. The role of acetic acid in FeCO3 scale deposition on CO2 corrosion of API X65 carbon steel under high temperatures / Corrosion Eng. Sci. Technol. 2021. Vol. 56. P. 553 – 564. DOI: 10.1080/1478422X.2021.1920171
14. Vagapov R. K., Prokopenko A. Yu., Tomsky I. S. Assessment of the steel corrosion rate at the infrastructure facilities of hydrocarbon deposits as a function of the mineralization and temperature / Zavod. Lab. Diagn. Mater. 2021. Vol. 87. N 6. P. 41 – 44 [in Russian]. DOI: 10.26896/1028-6861-2021-87-6-41-44
15. Vagapov R. K., Zapevalov D. N. Corrosion Activity of Operating Conditions for the Steel Equipment and Pipelines in the Plants Extracting CO2-Containing Gases / Metallurgist. 2021. Vol. 65. N 1 – 2. P. 50 – 61. DOI: 10.1007/s11015-021-01132-x
16. Fajardo V., Eslami M., Choi Y.-S., et al. Influence of Acetic Acid on the Integrity and Protectiveness by an Iron Carbonate (FeCO3) Corrosion Product Layer / Corrosion. 2021. Vol. 77. P. 97 – 111. DOI: 10.5006/3659
17. Esmaeely S., Young D., Brown B., et al. Effect of Incorporation of Calcium into Iron Carbonate Protective Layers in CO2 Corrosion of Mild Steel / Corrosion. 2017. Vol. 73. P. 238 – 246. DOI: 10.5006/2261
18. Rizzo R., Palencsár A., Ambat R. A flow loop study on the effect of Ca2+ ions on the CO2 corrosion of 1Cr carbon steel in a CaCO3-saturated solution / Corrosion Eng. Sci. Technol. 2021. Vol. 56. P. 787 – 795. DOI: 10.1080/1478422X.2021.1973175
19. Rizzo R., Ambat R. Effect of initial CaCO3 saturation levels on the CO2 corrosion of 1Cr carbon steel / Materials and Corrosion. 2021. Vol. 72. P. 1076 – 1090. DOI: 10.1002/maco.202011822
20. Mansoori H., Young D., Brown B., et al. CO2 Corrosion of Mild Steel Exposed to CaCO3-Saturated Aqueous Solutions / Corrosion. 2019. Vol. 75. P. 1281 – 1284. DOI: 10.5006/3310
21. Wang C., Hua Y., Nadimi S., et al. Anti-corrosion characteristics of FeCO3 and FexCayMgzCO3 scales on carbon steel in high-PT CO2 environments / Chem. Eng. J. 2022. Vol. 431. Art. 133484. DOI: 10.1016/j.cej.2021.133484
22. Mohammed S., Hua Y., Barker R., et al. Effect of calcium on X65 carbon steel pitting in saturated CO2 environment / Electrochimica Acta. 2022. Vol. 407. Art. 139899. DOI: 10.1016/j.electacta.2022.139899
23. Mansoori H., Young D., Brown B., et al. Influence of calcium and magnesium ions on CO2 corrosion of carbon steel in oil and gas production systems (review) / J. Nat. Gas Sci. Eng. 2018. Vol. 59. P. 287 – 296. DOI: 10.1016/j.jngse.2018.08.025
24. Ding C., Gao K., Chen C. Effect of Ca2+ on CO2 corrosion properties of X65 pipeline steel / International Journal of Minerals Metallurgy and Materials. 2009. Vol. 16. P. 661 – 666. DOI: 10.1016/S1674-4799(10)60009-X
25. Shamsa A., Barker R., Hua Y., et al. The role of Ca2+ ions on Ca/Fe carbonate products on X65 carbon steel in CO2 corrosion environments at 80 and 150 °C / Corrosion Science. 2019. Vol. 156. P. 58 – 70. DOI: 10.1016/j.corsci.2019.05.006
26. Hua Y., Shamsa A., Barker R., et al. Protectiveness, morphology and composition of corrosion products formed on carbon steel in the presence of Cl–, Ca2+ and Mg2+ in high pressure CO2 environments / Appl. Surface Sci. 2018. Vol. 455. P. 667 – 682. DOI: 10.1016/j.apsusc.2018.05.140
27. Mansoori H., Young D., Brown B., et al. Effect of CaCO3-saturated solution on CO2 corrosion of mild steel explored in a system with controlled water chemistry and well-defined mass transfer conditions / Corrosion Science. 2019. Vol. 158. Art. 108078. DOI: 10.1016/j.corsci.2019.07.004
28. Mansoori H., Brown B., Young D., et al. Effect of FexCayCO3 and CaCO3 scales on the CO2 corrosion of mild steel / Corrosion. 2019. Vol. 75. P. 1434 – 1449. DOI: 10.5006/3290
Review
For citations:
Vagapov R.K., Mikhalkina O.G. Study of carbon dioxide corrosion products by the X-ray diffraction method. Industrial laboratory. Diagnostics of materials. 2022;88(9):35-41. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-9-35-41