

The process parameter matrix method in controlling marine engine wear dynamics
https://doi.org/10.26896/1028-6861-2022-88-9-47-52
Abstract
Determination of the analytical relationship between real time changes in the quality characteristics of motor oils and an assessment of the state of the mechanism units subjected to friction is important when predicting the tribological characteristics of marine diesel engines. Changes in the lubricant parameters reflect the current technical condition of the engine components and assemblies. A method of process parameter matrix (PPM) is proposed to control the wear dynamics of a marine diesel engine. PPM is used to process statistical data on the performance of oils used in a MAN B&W Diesel Den 6L28/32A marine diesel engine through 2007 to 2021. The results of practical studies of changes in the physicochemical characteristics of motor oils in real operating conditions are presented. The results obtained can be used in the development of specialized software that allows obtaining operational information about the dynamics of engine wear.
About the Authors
P. S. ShcherbanRussian Federation
Pavel S. Shcherban
57, ul. General-leytenanta Ozerova, Kaliningrad, 236000
E. V. Mazur
Russian Federation
Ekaterina V. Mazur
57, ul. General-leytenanta Ozerova, Kaliningrad, 236000
S. N. Mazur
Norway
Sergey N. Mazur
5953, Fonnes 50
References
1. Markova L. V., Myshkin N. K. Tribodiagnostics of machines. — Minsk: Belorusskaya nauka, 2005. — 251 p. [in Russian].
2. Liu S., Cui Y., Fu Y., et al. Modeling of lubricated translational joints in rigid-partially flexible multibody systems and its application in two-stroke marine diesel engines / Tribol. Int. 2022. Vol. 165. P. 107244. DOI: 10.1016/j.triboint.2021.107244
3. Jiao B., Li T., Liu Z., et al. Lubrication analysis of the piston ring of a two-stroke marine diesel engine considering thermal effects / Eng. Failure Analysis. 2021. Vol. 129. P. 105659. DOI: 10.1016/j.engfailanal.2021.105659
4. Jayakumar N., Mohanamurugan S., Rajavel R. Study of wear in chrome plated cylinder liner in two stroke marine diesel engine lubricated by Hans Jensen swirl injection principle / Mater. Today: Proc. 2017. Vol. 4. N 2. P. 1535 – 1541. DOI: 10.1016/j.matpr.2017.01.176
5. Ouyang T., Huang G., Su Z., et al. Design and optimisation of an advanced waste heat cascade utilisation system for a large marine diesel engine / J. Cleaner Production. 2020. Vol. 273. P. 123057. DOI: 10.1016/j.jclepro.2020.123057
6. Tadros M., Ventura M., Soares C. Optimization procedure to minimize fuel consumption of a four-stroke marine turbocharged diesel engine / Energy. 2019. Vol. 168. P. 897 – 908. DOI: 10.1016/j.energy.2018.11.146
7. Zhang J., Lyu F., Xu B., et al. Simulation and Experimental Investigation on Low Wear Rate Surface Contour of Piston/Cylinder Pair in an Axial Piston Pump / Tribol. Int. 2021. P. 107127. DOI: 10.1016/j.triboint.2021.107127
8. Zhu S., Zhang K., Deng K. A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles / Renewable and Sustainable Energy Reviews. 2020. Vol. 120. P. 109611. DOI: 10.1016/j.rser.2019.109611
9. Xu Y., Stokes J. Soft lubrication of model shear-thinning fluids / Tribol. Int. 2020. Vol. 152. P. 106541. DOI: 10.1016/j.triboint.2020.106541
10. Arumugam S., Ellappan R., Sriram G. Degradation of engine components upon exposure to chemically modified vegetable oil-Based automotive lubricant / J. Indian Chem. Soc. 2021. Vol. 98. N 11. P. 100227. DOI: 10.1016/j.jics.2021.100227
11. Yusuf A., Yusuf D., Jie Z., et al. Influence of waste oil-biodiesel on toxic pollutants from marine engine coupled with emission reduction measures at various loads / Atmospheric Pollution Research. 2021. P. 101258. DOI: 10.1016/j.apr.2021.101258
12. Liu J., Thompson G. The multi-factor design evaluation of antenna structures by parameter profile analysis / Proc. Inst. Mech. Eng. Part B. J. Eng. Manufact. 1996. Vol. 210. N 5. P. 449 – 456. DOI: 10.1243/PIME_PROC_1996_210_142_02
13. Sharma B. C., Gandhi O. P. Performance evaluation and analysis of lubricating oil using parameter profile approach / Industrial Lubrication and Tribology. 2008. Vol. 60. N 3. P. 131 – 137. DOI: 10.1108/00368790810871057/full/html
14. Macián V., Tormos B., Lerma M. Evaluation of metallic elements in oil for an engine fault diagnosis system / Tribotest. 2001. Vol. 8. N 2. P. 163 – 176. DOI: 10.1002/tt.3020080206
15. Das A., Hansdah D., Panda A. Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives / Energy. 2021. Vol. 229. P. 120629. DOI: 10.1016/j.energy.2021.120629
16. Maduako A. U. C., Ofunner G. C., Ojinnaka C. M. The role of metals in the oxidative degradation of automotive crankcase oils / Tribol. Int. 1996. Vol. 29. N 2. P. 153 – 160. DOI: 10.1016/0301-679X(95)00013-T
17. Han Y., Wang J., Li W., et al. Oil film variation and surface damage in the process of reciprocation-oscillation transformation / Tribol. Int. 2019. Vol. 140. P. 105828. DOI: 10.1016/j.triboint.2019.06.021
Review
For citations:
Shcherban P.S., Mazur E.V., Mazur S.N. The process parameter matrix method in controlling marine engine wear dynamics. Industrial laboratory. Diagnostics of materials. 2022;88(9):47-52. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-9-47-52