Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Analytical appro­ aches in the development of industry standard specimens of aluminum production electrolyte

https://doi.org/10.26896/1028-6861-2022-88-10-20-29

Abstract

   A combination of the methods of X-ray phase and X-ray spectral analyzes is used at domestic aluminum plants for operational technological control of the composition of cooled electrolytes. In this case, standard samples of chemical and phase composition are used to calibrate measuring instruments. The synthesis of standard samples from simple components is impossible due to the inadequacy of their microcrystalline structure to real electrolyte samples. Therefore, it is necessary to develop standard samples directly from the material of real electrolytes with a reliably established quantitative chemical and mineralogical phase composition. We managed to develop a set of 30 standard samples of aluminum-produced electrolyte using electrolytes taken from the electrolysis baths of various plants; some of the samples were doped with so­dium, aluminum, calcium, and magnesium fluorides to expand the range of compositions. A metrological certification of the set with the status of "Industry standard samples" was performed based on the data of interlaboratory analysis according to the methods of X-ray control used at the plants and according to the well-known Rietveld X-ray phase method for determining the quantitative phase composition. The set has been successfully implemented at seven RUSAL plants.

About the Authors

P. S. Dubinin
Siberian Federal University
Russian Federation

Petr S. Dubinin

660025

95, Krasnoyarsky rabochiy prosp.

Krasnoyarsk



I. S. Yakimov
Siberian Federal University
Russian Federation

Igor S. Yakimov

660025

95, Krasnoyarsky rabochiy prosp.

Krasnoyarsk



A. S. Samoilo
Siberian Federal University
Russian Federation

Alexander S. Samoilo

660025

95, Krasnoyarsky rabochiy prosp.

Krasnoyarsk



S. G. Ruzhnikov
Siberian Federal University
Russian Federation

Sergei G. Ruzhnikov

660025

95, Krasnoyarsky rabochiy prosp.

Krasnoyarsk



O. E. Bezrukova
Siberian Federal University
Russian Federation

Oksana E. Bezrukova

660025

95, Krasnoyarsky rabochiy prosp.

Krasnoyarsk



A. N. Zaioga
Siberian Federal University
Russian Federation

Alexander N. Zaioga

660025

95, Krasnoyarsky rabochiy prosp.

Krasnoyarsk



S. D. Kirik
Siberian Federal University
Russian Federation

Sergey D. Kirik

660025

95, Krasnoyarsky rabochiy prosp.

Krasnoyarsk



D. V. Khiystov
Siberian Federal University
Russian Federation

Denis V. Khiystov

660025

95, Krasnoyarsky rabochiy prosp.

Krasnoyarsk



References

1. Korneev S. I. International review of the non-ferrous metals market / Tsvet. Met. 2022. N 1. P 5 - 6 [in Russian].

2. Yakimov I. S., Dubinin P. S., Zaloga A. N., et al. Develop­ment of industry standard samples of the electrolyte of alumi­num electrolyzers / Stand. Obraztsy 2008. N 4. P. 34 - 42 [in Russian].

3. Finkelstein A. L., Pochuev N. M., Pavlov L. Yu., et al. X-ray fluorescence spectrometer ARL 9800 TAXA with a diffraction channel: determination of the cryolite ratio of alumi­num baths / Zavod. Lab. Diagn. Mater. 2001. Vol. 67. N 7. P 73 - 76 [in Russian].

4. Diffractometric determination of the cryolite module of quenched and slowly cooled electrolytes of aluminum baths with additions of calcium and magnesium fluorides: Temporary instruction. — Leningrad: VAMI, 1982. P. 27 [in Russian].

5. Kirik S. D., Yakimov I. S. Technological control of electrolyte in aluminum production / Proc. of int. conference "Strategic priorities and innovations in the production of non-ferrous metals and gold", Krasnoyarsk, 2006 [in Russian].

6. Yakimov I. S. Information retrieval system of X-ray phase analysis / Certificate of state registration of the computer program N 2009616184 dated 11/10/2009 [in Russian].

7. Yakimov I. S. Method of cluster X-ray phase identification of multiphase materials / KontroT. Diagn. 2010. N 7. P 12 - 17 [in Russian].

8. ICSD International Data Bank for Crystal Structure Data. https://icsd.nist.gov/ (accessed July 5, 2022).

9. Yakimov I. S., Dubinin P. S., Piksina О. E. Regularized multireflex method of reference intensities for quantitative X-ray phase analysis of polycrystalline materials / Zavod. Lab. Diagn. Mater. 2010. Vol. 76. N 12. P 21 - 26 [in Russian].

10. Young R. A. (ed.) The Rietveld Method. — Oxford University Press, 1995. —298 p. DOI: 10.1002/crat.2170300412

11. Bish D. L., Howard S. A. Quantitative phase analysis using the Rietveld method / J. Appl. Cryst. 1988. Vol. 21. P 86 - 91. DOI: 10.1107/S0021889887009415

12. Saville A. I., Creuziger A., Mitchell E. В., et al. MAUD Rietveld Refinement Software for Neutron Diffraction Texture Studies of Single- and Dual-Phase Materials / Integr. Mater. Manufact. Innovation. 2021. Vol. 10. P 461 - 487. DOI: 10.1007/s40192-021-00224-5

13. Toby В. H. International Tables for Crystallography / Powder Diffr. 2019. Vol. H. Ch. 4.7. P. 465 - 472. DOI: 10.1107/97809553602060000962

14. Coelho A. A., Evans J., Evans I., et al. The TOPAS symbolic computation system / Powder Diffr. 2011. Vol. 26. Suppl. SI. P. S22 - S25. DOI: 10.1154/1.3661087

15. Grazulis S., Daskevic A., Merkys A., et al. Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration / Nucleic Acids Res. 2012. Vol. 40. N Dl. P. D420 - D427. DOI: 10.1093/nar/gkr900


Review

For citations:


Dubinin P.S., Yakimov I.S., Samoilo A.S., Ruzhnikov S.G., Bezrukova O.E., Zaioga A.N., Kirik S.D., Khiystov D.V. Analytical appro­ aches in the development of industry standard specimens of aluminum production electrolyte. Industrial laboratory. Diagnostics of materials. 2022;88(10):20-29. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-10-20-29

Views: 398


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)