Analytical appro aches in the development of industry standard specimens of aluminum production electrolyte
https://doi.org/10.26896/1028-6861-2022-88-10-20-29
Abstract
A combination of the methods of X-ray phase and X-ray spectral analyzes is used at domestic aluminum plants for operational technological control of the composition of cooled electrolytes. In this case, standard samples of chemical and phase composition are used to calibrate measuring instruments. The synthesis of standard samples from simple components is impossible due to the inadequacy of their microcrystalline structure to real electrolyte samples. Therefore, it is necessary to develop standard samples directly from the material of real electrolytes with a reliably established quantitative chemical and mineralogical phase composition. We managed to develop a set of 30 standard samples of aluminum-produced electrolyte using electrolytes taken from the electrolysis baths of various plants; some of the samples were doped with sodium, aluminum, calcium, and magnesium fluorides to expand the range of compositions. A metrological certification of the set with the status of "Industry standard samples" was performed based on the data of interlaboratory analysis according to the methods of X-ray control used at the plants and according to the well-known Rietveld X-ray phase method for determining the quantitative phase composition. The set has been successfully implemented at seven RUSAL plants.
Keywords
About the Authors
P. S. DubininRussian Federation
Petr S. Dubinin
660025
95, Krasnoyarsky rabochiy prosp.
Krasnoyarsk
I. S. Yakimov
Russian Federation
Igor S. Yakimov
660025
95, Krasnoyarsky rabochiy prosp.
Krasnoyarsk
A. S. Samoilo
Russian Federation
Alexander S. Samoilo
660025
95, Krasnoyarsky rabochiy prosp.
Krasnoyarsk
S. G. Ruzhnikov
Russian Federation
Sergei G. Ruzhnikov
660025
95, Krasnoyarsky rabochiy prosp.
Krasnoyarsk
O. E. Bezrukova
Russian Federation
Oksana E. Bezrukova
660025
95, Krasnoyarsky rabochiy prosp.
Krasnoyarsk
A. N. Zaioga
Russian Federation
Alexander N. Zaioga
660025
95, Krasnoyarsky rabochiy prosp.
Krasnoyarsk
S. D. Kirik
Russian Federation
Sergey D. Kirik
660025
95, Krasnoyarsky rabochiy prosp.
Krasnoyarsk
D. V. Khiystov
Russian Federation
Denis V. Khiystov
660025
95, Krasnoyarsky rabochiy prosp.
Krasnoyarsk
References
1. Korneev S. I. International review of the non-ferrous metals market / Tsvet. Met. 2022. N 1. P 5 - 6 [in Russian].
2. Yakimov I. S., Dubinin P. S., Zaloga A. N., et al. Development of industry standard samples of the electrolyte of aluminum electrolyzers / Stand. Obraztsy 2008. N 4. P. 34 - 42 [in Russian].
3. Finkelstein A. L., Pochuev N. M., Pavlov L. Yu., et al. X-ray fluorescence spectrometer ARL 9800 TAXA with a diffraction channel: determination of the cryolite ratio of aluminum baths / Zavod. Lab. Diagn. Mater. 2001. Vol. 67. N 7. P 73 - 76 [in Russian].
4. Diffractometric determination of the cryolite module of quenched and slowly cooled electrolytes of aluminum baths with additions of calcium and magnesium fluorides: Temporary instruction. — Leningrad: VAMI, 1982. P. 27 [in Russian].
5. Kirik S. D., Yakimov I. S. Technological control of electrolyte in aluminum production / Proc. of int. conference "Strategic priorities and innovations in the production of non-ferrous metals and gold", Krasnoyarsk, 2006 [in Russian].
6. Yakimov I. S. Information retrieval system of X-ray phase analysis / Certificate of state registration of the computer program N 2009616184 dated 11/10/2009 [in Russian].
7. Yakimov I. S. Method of cluster X-ray phase identification of multiphase materials / KontroT. Diagn. 2010. N 7. P 12 - 17 [in Russian].
8. ICSD International Data Bank for Crystal Structure Data. https://icsd.nist.gov/ (accessed July 5, 2022).
9. Yakimov I. S., Dubinin P. S., Piksina О. E. Regularized multireflex method of reference intensities for quantitative X-ray phase analysis of polycrystalline materials / Zavod. Lab. Diagn. Mater. 2010. Vol. 76. N 12. P 21 - 26 [in Russian].
10. Young R. A. (ed.) The Rietveld Method. — Oxford University Press, 1995. —298 p. DOI: 10.1002/crat.2170300412
11. Bish D. L., Howard S. A. Quantitative phase analysis using the Rietveld method / J. Appl. Cryst. 1988. Vol. 21. P 86 - 91. DOI: 10.1107/S0021889887009415
12. Saville A. I., Creuziger A., Mitchell E. В., et al. MAUD Rietveld Refinement Software for Neutron Diffraction Texture Studies of Single- and Dual-Phase Materials / Integr. Mater. Manufact. Innovation. 2021. Vol. 10. P 461 - 487. DOI: 10.1007/s40192-021-00224-5
13. Toby В. H. International Tables for Crystallography / Powder Diffr. 2019. Vol. H. Ch. 4.7. P. 465 - 472. DOI: 10.1107/97809553602060000962
14. Coelho A. A., Evans J., Evans I., et al. The TOPAS symbolic computation system / Powder Diffr. 2011. Vol. 26. Suppl. SI. P. S22 - S25. DOI: 10.1154/1.3661087
15. Grazulis S., Daskevic A., Merkys A., et al. Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration / Nucleic Acids Res. 2012. Vol. 40. N Dl. P. D420 - D427. DOI: 10.1093/nar/gkr900
Review
For citations:
Dubinin P.S., Yakimov I.S., Samoilo A.S., Ruzhnikov S.G., Bezrukova O.E., Zaioga A.N., Kirik S.D., Khiystov D.V. Analytical appro aches in the development of industry standard specimens of aluminum production electrolyte. Industrial laboratory. Diagnostics of materials. 2022;88(10):20-29. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-10-20-29