Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Study of the electrophysical characteristics of plastic lubricants

https://doi.org/10.26896/1028-6861-2022-88-10-43-47

Abstract

   Actively developing electric automobile transport assumes the creation of conductive lubricants. We pres­ent a setup designed to study the electrophysical properties of industrially produced and model plastic lubricants, as well as the samples of a similar consistency. The setup operates within the current frequency range from 0.1 to 1 kHz and includes a temperature-controlled measuring cell that allows changes in the sample thickness and temperature in the range from 20 to 120 °C. A method for determination of cur­rent-voltage characteristics with subsequent calculation of the specific electrical conductivity is proposed. The specific electrical conductivity of model plastic lubricants based on medical vaseline added with car­bon nanostructures (few-layer graphite fragments and their modified analogs) was studied using the de­veloped setup. Vaseline was used as a base model lubricant, since its rheological properties are similar to that of plastic lubricants and it does not contain any additional additives that can affect the measurement result. The electrically conductive properties of the dispersions of carbon nanostructures and their modi­fied analogs in vaseline were analyzed. It is shown that the introduction of carbon nanostructures into dielectric vaseline turns it into an electrically conductive material. The developed setup makes it possible to study the specific electrical conductivity of systems simulating plastic lubricants with a sufficient accuracy. The results obtained can be used to improve the methodology for studying the specific electrical conductivity of model and industrially produced plastic lubricants, including those with conductive additives.

About the Authors

A. I. Smirnova
Ivanovo State University
Russian Federation

Antonina I. Smirnova

153025

39, ul. Ermaka

Ivanovo



L. I. Mineev
Ivanovo State University
Russian Federation

Leonty I. Mineev

153025

39, ul. Ermaka

Ivanovo



I. A. Gerasimov
Ivanovo State University
Russian Federation

Ilya A. Gerasimov

153025

39, ul. Ermaka

Ivanovo



M. A. Golubeva
Ivanovo State University
Russian Federation

Maria A. Golubeva

153025

39, ul. Ermaka

Ivanovo



M. A. Shilov
Ivanovo State Power Engineering University named after V. I. Lenin
Russian Federation

Mikhail A. Shilov

153003

34, ul. Rabfakovskaya

Ivanovo



N. V. Usol'tseva
Ivanovo State University
Russian Federation

Nadezhda V Usol'tseva

153025

39, ul. Ermaka

Ivanovo



References

1. Mustafa W., Dassenoy F., Sarno M., Senatore A. A review on potentials and challenges of nanolubricants as promising lubricants for electric vehicles / Lubrication Science. 2022. Vol. 34. E 1 -29. DOI: 10.1002/ls.1568

2. Farfan-Cabrera L. I. Tribology of electric vehicles: A review of critical components, current state and future improvement trends / Tribology International. 2019. Vol. 138. E 473 - 486. DOI: 10.1016/j.triboint.2019.06.029

3. Karki A., Phuyal S., Tuladhar D., Basnet S., Shrestha B. Status of pure electric vehicle power train technology and future prospects / Appl. Syst. Innov. 2020. Vol. 3. N 35. DOI: 10.3390/asi3030035

4. He F., Xie G., Luo J. Electrical bearing failures in electric vehicles / Friction. 2020. Vol. 8. N 1. E 4 - 28. DOI: 10.1007/s40544-019-0356-5

5. Holmberg K., Erdemir A. The impact of tribology on energy use and C0<sub>2</sub> emission globally and in combustion engine and electric cars / Tribol. Int. 2019. Vol. 135. E 389 - 396. DOI: 10.1016/j.triboint.2019.03.024

6. Lugt P. М. Modern advancements in lubricating grease technology / Tribology International. 2016. Vol. 97. P 467 - 477. DOI: 10.1016/j.triboint.2016.01.045

7. Myshkin N. K., Konchic V. V. Boundary lubrication of electrical contacts / Trenie i iznos. 1980. Vol. 1. N 3. P 483 - 495 [in Russian].

8. Suzumura J. Prevention of electrical pitting on rolling bearings by electrically conductive grease / QR of RTRI. 2016. Vol. 57. N 1. P 42 - 47. DOI: 10.2219/rtriqr.57.1_42

9. Dassenoy F. Nanoparticles as additives for the development of high performance and environmentally friendly engine lubricants / Tribology Online. 2019. Vol. 14. N 5. P 237 - 253. DOI: 10.2474/trol.14.237

10. Myshkin N., Konchic V., Braunovich M. Electrical contacts. — Dolgoprudny: Intellekt, 2008. — 560 p. [in Russian].

11. Chen Y., Jha S., Raut A., Zhang W., Liang Pi. Performance characteristics of lubricants in electric and hybrid vehicles: a review of current and future needs / Frontiers in Mechanical Engineering. 2020. Vol. 6. P 571464. DOI: 10.3389/fmech.2020.571464

12. Narita K., Takekawa D. Lubricants technology applied to transmissions in hybrid electric vehicles and electric vehicles / SAE Technical Paper. 2019. N 01. P 2338. DOI: 10.4271/2019-01-2338

13. Strokova V. V., Fanina E. A., Kal'chev D. N. Electrical conductivity and aggregation of carbon nanotubes in a heterogeneous system / Vestn. BGTU. 2017. N 8. P 140 - 144 [in Russian]. URL: https://cyberleninka.ru/article/n/elektroprovodnost-i-agregatsiya-uglerodnyh-nanotrubok-v-geterogennoy-sisteme

14. Christensen G., Yang J., Lou D., Hong G., Hong H., Tolle C, Widener C, Bailey C, Hrabe R., Younes H. Carbon nanotubes grease with high electrical conductivity / Synthetic Metals. 2020. Vol. 268. P 116496. DOI: 10.1016/j.synthmet.2020.116496

15. Alekseev A. N., Dovgopola A. V., Kovalov К. M., Lazarenko M. M., Tkachev S. Yu. Determination of the Specific Conductivity of Aqueous Electrolyte Solutions / Zavod. Lab. Diagn. Mater. 2016. Vol. 82. N 7. P 40 - 42 [in Russian].

16. Fanina E. A., Lopanov A. N. Electrically conductive construction materials for building purposes / Vestn. MGSU. 2009. N 4 . E 258 - 261 [in Russian].

17. Chernyak S. A., Stolbov D. N., Maslakov K. I., Maksimov S. V., Isaikina O. Ya., Savilov S. V. Effect of Synthesis Conditions on Morphology, Structure, and Defectiveness of Few-Layer Graphene Nanoflakes / Russian Journal of Physical Chemistry A. 2021. Vol. 95. N 3. P 558 - 564. DOI: 10.1134/S0036024421030109

18. Stolbov D. N., Smirnova A. I., Savilov S. V., Shilov M. A., Burkov A. A., Parfenov A. S., Usol'tseva N. V. Influence of different types of carbon nanoflakes on tribological and rheological properties of plastic lubricants / Fullerenes, Nanotubes and Carbon Nanostructures. 2022. Vol. 30. Issue 1. P 177 - 184. DOI: 10.1080/1536383X.2021.1960315

19. Parfenov A. S., Shilov M. A., Smirnova A. I., Berezi­na E. V., Tkachev A. G., Burkov A. A., Rozhkova N. N., Usol'tseva N. V. Influence of various carbon allotropes on tribological and rheological characteristics of model lubricating systems / Friction and Wear. 2021. Vol. 42. N 3. P 217 - 224. DOI: 10.3103/S1068366621030132


Review

For citations:


Smirnova A.I., Mineev L.I., Gerasimov I.A., Golubeva M.A., Shilov M.A., Usol'tseva N.V. Study of the electrophysical characteristics of plastic lubricants. Industrial laboratory. Diagnostics of materials. 2022;88(10):43-47. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-10-43-47

Views: 380


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)