Preview

Industrial laboratory. Diagnostics of materials

Advanced search

AMPEROMETRIC BIOSENSORS FOR THE DETERMINATION OF TETRACYCLINE

https://doi.org/10.26896/1028-6861-2022-88-ll-5-13

Abstract

Amperometric biosensors based on planar graphite electrodes modified by multi-walled carbon nanotubes (CNTs) in chitosan, reduced graphene oxide (RGO), gold nanoparticles (Au NPs) in chitosan, nanocomposites based on them, and immobilized tyrosine enzyme for the determination of tetracycline have been developed. It is shown that tetracycline is a tyrosinase inhibitor, which provides the determination of tetracycline using a tyrosinase biosensor in the concentration range from 1 nM to 1 pM with LOD 0.5 nM. According to the results of kinetic studies of the reaction of the enzymatic conversion of phenol, it is found that in the presence of tetracycline, uncompetitive inhibition is observed on the tyrosinase biosensor. Electrodes modified with nanomaterials can be used as primary transducers of biosensors for fast and accurate determination of the tetracycline concentration. Combination of carbon nanomaterials with metal nanoparticles can form a nanocomposite with a synergistic effect. The use of carbon nanomaterials and metal nanoparticles as modifiers of the electrode surface made it possible to improve the analytical characteristics of the developed sensors: the range of determined concentrations in case of a biosensor modified with CNT/Au NPs and RGO/Au NPs was 1 nM - 1 pM and 0.1 nM - 1 pM, respectively. The correlation coefficient was 0.9925, and the lower limit of the determined concentrations was 50 pM (biosensor with CNT/Au NPs) and 0.7 nM (biosensor with RGO/Au NPs), respectively. The relative standard deviation of the results obtained using biosensors did not exceed 0.078. Methods for the determination of tetracycline using the proposed biosensors in milk and cosmetics have been tested. The compounds present in these samples, structurally unrelated to tetracycline, do not interfere with the determination.

About the Authors

R. M. Beilinson
Kazan (Privolzhsky) Federal University
Russian Federation

Regina M. Beilinson

420008, Kazan, Kremlevskaya uL, 18



A. A. Yavisheva
Kazan (Privolzhsky) Federal University
Russian Federation

Alsu A. Yavisheva

420008, Kazan, Kremlevskaya uL, 18



N. Y. Lopatko
Kazan (Privolzhsky) Federal University
Russian Federation

Nadezhda Yu. Lopatko

420008, Kazan, Kremlevskaya uL, 18



E. E. Medyantseva
Kazan (Privolzhsky) Federal University
Russian Federation

Elvina E Medyantseva

420008, Kazan, Kremlevskaya uL, 18



References

1. Great Medical Encyclopedia (ed. by B. V Fetrovsky). Vol. 25: Reference book. — Moscow: Sovetskaya Entsiklopediya, 1985. https://6M3.opr/index.php/TETFAII,niUinHBI (accessed August 10, 2022)

2. Esipov S. E. Tetracyclines / Chemical Encyclopedia. Vol. 4 // Ed. by N. S. Zefirov. — Moscow: BoTshaya Rossiiskaya Entsiklopediya, 1995. P 559 [in Russian].

3. Pei Yang, Ziqi Zhu, Minzhi Chen, et al. Microwave-assisted synthesis of xylan-derived carbon quantum dots for tetracycline sensing / Opt. Mater. 2018. Vol. 85. P 329-336. DOI:10.1016/j.optmat.2018.06.034

4. Anand S. K., Sivasankaran U., Jose A. R., Kumar K. G. Interaction of tetracycline with L-cysteine functionalized CdS quantum dots — Fundamentals and sensing application / Spectrochim. Acta. A. 2019. Vol. 213. P 410-415. DOI:10.1016/j.saa.2019.01.068

5. Grande-Martinez A., Moreno-Gonzalez D., Arrebola-Liebanas F. J., et al. Optimization of a modified QuEChEES method for the determination of tetracyclines in fish muscle by UHFLC-MS/MS / J. Fharm. Biomed. Anal. 2018. Vol. 155. P 27-32. DOI:10.1016/j.jpba.2018.03.029

6. Gissawong N., Boonchiangma S., Mukdasai S., Srijaranai S.. Vesicular supramolecular solvent-based microextraction followed by high performance liquid chromatographic analysis of tetracyclines / Talanta. 2019. Vol. 200. P 203-211. DOI:10.1016/j.talanta.2019.03.049

7. Hua Guo, Ya Su, Yanling Shen, et al. In situ decoration of Au nanoparticles on carbon nitride using a single-source precursor and its application for the detection of tetracycline / J. Colloid Interface Sci. 2019. Vol. 536. P 646-654. DOI:10.1016/j.jcis.2018.10.104

8. Huimin Zhao, Hongtao Wang, Xie Quana, Feng Tan. Amperometric Sensor for Tetracycline Determination Based on Molecularly Imprinted Technique / Frocedia Environ. Sci. 2013. Vol. 18. P 249-257. DOI:10.1016/j.proenv.2013.04.032

9. Kulapina E. G., Barinova O. I., Kulapina O. I., et al. Modern methods for the determination of antibiotics in biological and medicinal environments (a review) / Antibiot. Khimioter. 2009. Vol. 54. N 9-10. P 53-60 [in Russian].

10. Besharati M., Hamedi J., Hosseinkhani S., Sabe R. A novel electrochemical biosensor based on TetX2 monooxygenase immobilized on a nano-porous glassy carbon electrode for tetracycline residue detection / Bioelectrochemistry 2019. Vol. 128. P 66-73. DOI:10.1016/j.bioelechem.2019.02.010

11. Shtykov S. N., ed. Nanoobjects and Nanotechnologies in Chemical Analysis: Froblems of Analytical Chemistry. — Moscow: Nauka, 2015. — 431 p. [in Russian].

12. Vikulova E. V Electrochemical properties of gold nanoparticles and a sensor based on them: author's abstract of candidate's thesis. — Yekaterinburg, 2013. — 24 p. [in Russian].

13. Duckworth H. W., Coleman J. E. Fhysicochemical and kinetic properties of mushroom tyrosinase / J. Biol. Chem. 1970. Vol. 245. P 1613-1625. DOI:10.1016/S0021-9258(19)77137-3

14. Yakup Arica M., Giilay В., Niyazi B. Characterisation of tyrosinase immobilised onto spacer-arm attached glycidyl methacrylate-based reactive microbeads / Frocess Biochem. 2004. Vol. 39. P 2007-2017. DOI:10.1016/j.procbio.2003.09.030

15. Evtyugin G. A., Budnikov G. K., Stoikova E. E. Fundamentals of biosensorics: a tutorial. — Kazan, 2007. — 82 p. [in Russian].

16. Kulis Yu. Yu. Analytical systems based on immobilized enzymes. — Vilnius: Mokslas, 1981. — 200 p. [in Russian].

17. Zhao Q., Zhuang Q. K. Determination of Fhenolic Compounds Based on the Tyrosinase-Single Walled Carbon Nanotubes Sensor / Electroanalysis. 2005. Vol. 17. N 1. P 85-88. DOI:10.1002/elan.200403123

18. Huang Т., Xu X.-H. N. Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using singlenanoparticle plasmonic microscopy and spectroscopy / J. Mater. 2007. Vol. 300. P 13-19. DOI:10.1039/C0JM01990A

19. De Lima C, da Silva P. S., Spinelli A. Chitosan-stabilized silver nanoparticles for voltammetric detection of nitrocompounds / Sens. Actuators. B. 2014. Vol. 196. P 39-45. DOI:10.1016/j.snb.2014.02.005

20. Mani V, Devadas В., Chen S. M. Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxidemultiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor / Biosens. Bioelectron. 2013. Vol. 42. P 309-315. DOI:10.1016/j.bios.2012.08.045

21. Shashkanova O. Yu., Ermolaeva T. N. A new method for diagnosing autoimmune diseases based on an affinity reaction on the surface of a piezoquartz sensor / Sorbts. Khromatogr. Frots. 2009. Vol. 9. N 5. P 677-692.

22. Varlamova R. M., Medyantseva E. P., Khamidullhia R. R., Budnikov G. K. Amperometric tyrosinase biosensors based on nanomaterial-modified electrodes for aflatoxin Ml / J. Anal. Chem. 2019. Vol. 74. Suppl. 1. P 59-61. DOI:10.1134/S1061934819070189

23. Beilinson R. M., Yavisheva A. A., Medyantsev E. P., Budnikov G. K. Amperometric tyrosinase biosensors modified with nanomaterials of various nature for the determination of diclofenac / J. Anal. Chem. 2021. Vol. 76. N 5. P 653-659. DOI:10.1134/S1061934821050075

24. Krupyanko V I. Vector method for representing enzymatic reactions. — Moscow: Nauka, 1990. — 144 p. [in Russian].

25. Vuran В., Ulusoy H. I., Sarp G., et al. Determination of chloramphenicol and tetracycline residues in milk samples by means of nanofiber coated magnetic particles prior to high-performance liquid chromatography-diode array detection / Talanta. 2021. Vol. 230. P 1-8. DOI:10.1016/j.talanta.2021.122307

26. Wang Q., Zhang L. Fabricated ultrathin magnetic nitrogen doped graphene tube as efficient and recyclable adsorbent for highly sensitive simultaneous determination of three tetracyclines residues in milk samples / J. Chromatogr. A. 2018. Vol. 1568. P 1-7. DOI:10.1016/j.chroma.2018.07.012

27. Wang G., Jing H. C. Z., Jian L., Wang P. A receptor-based chemiluminescence enzyme linked immunosorbent assay for determination of tetracyclines in milk / Anal. Biochem. 2019. Vol. 564 - 565. P 40-46. DOI:10.1016/j.ab.2018.10.017


Review

For citations:


Beilinson R.M., Yavisheva A.A., Lopatko N.Y., Medyantseva E.E. AMPEROMETRIC BIOSENSORS FOR THE DETERMINATION OF TETRACYCLINE. Industrial laboratory. Diagnostics of materials. 2022;88(11):5-13. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-ll-5-13

Views: 457


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)