Preview

Industrial laboratory. Diagnostics of materials

Advanced search

STUDY OF THE SOUND IMPEDANCE OF A WOODEN PANEL

https://doi.org/10.26896/1028-6861-2022-88-ll-27-31

Abstract

The development and production of effective sound-absorbing materials is an important direction in the construction industry. The results of studying features of the sound-absorbing properties of building structures, i. е., wooden panels, manufactured using CLT technology are presented. Sound insulation and sound absorption of CLT panels are based on the sound resistance. The sound pressure is formed by a frontal wave. The data were processed using the Laplace transform, the decomposition of sound into spectral components was carried out using the Fourier transform. Studies of wooden CLT panels with a cellular structure and given geometric parameters revealed that the acoustic impedance of the composite sound-absorbing CLT panel is higher than that of the massive CLT panel. Moreover, there is a difference in the sound resistance in the opposite direction of sound passage relative to the internal parabolic cavities. It is shown that the internal cavities act as instant resonators, whereas the enclosing elements of the CLT structure (walls, ceilings) with internal parabolic cavities can reduce the noise level by several times. Consequently, a single cavity ("sound pocket") formed by a paraboloid and a plane of a wooden lamella can be considered a module or an element of sound absorption. The results obtained can be used in the design of sound-absorbing materials using CLT composite sound-absorbing panels and modular design.

About the Authors

S. P. Amelchugov
Siberian Federal University
Russian Federation

Sergey P. Amelchugov

660041, Krasnoyarsk, pr. Svobodny, 82



A. R. Mokhirev
Siberian Federal University
Russian Federation

Aleksandr R Mokhirev

660041, Krasnoyarsk, pr. Svobodny, 82



I. V. Tarasov
Siberian Federal University
Russian Federation

Igor V Tarasov

660041, Krasnoyarsk, pr. Svobodny, 82



I. V. Khramov
Siberian Federal University
Russian Federation

Igor V Khramov

660041, Krasnoyarsk, pr. Svobodny, 82



References

1. Smirnova Е. V., Vasyutkina D. I. Results of comparative analysis of acoustic properties of building materials / Vestn. BGTU. 2013. N 1. P 26-29 [in Russian].

2. Tsukernikov I. E., Shubin I. L., Nevenchannaya Т. O. Designing protection against industrial noise / Uch. Zap. Fiz. Fak. Mosk. Univ. 2017. N 5. P 1751415 [in Russian].

3. Okuneva G. A., Radoutsky V Yu., Shaptala V G. Study of sound-insulating properties of building materials and structures based on foam glass / Vestn. BGTU. 2008. N 4. P 45-48 [in Russian].

4. Kosov I. I. Wooden panels CLT in the construction of public buildings / Integral. 2019. N 2-1. P 4-19 [in Russian].

5. Fedyuk R. S., Baranov A. V, Timokhin R. A., Svintsov A. P. Methods for determining the characteristics of sound absorption of building materials and sound insulation of structures (review) /Vestn. Inzh. Shkoly DFU 2020. N 4(45). P 125-139 [in Russian]. DOI:10.24866/2227-6858/2020-4-13

6. Fedotov E. S., Kustov O. Yu. Investigation of the influence of the type of acoustic signal on the determination of the impedance of samples of sound-absorbing structures / Aerokosm. Tekhn. Vys. Tekhnol. Innov. 2017. Vol. 1. P 280-283 [in Russian].

7. Cheremnykh N. N. Features of calculation of acoustic efficiency of sound absorption in woodworking / Lesa Rossii Khoz. Nikh. 2013. N 1(44). P 188-190 [in Russian].

8. Anoshkin A. N., Zakharov A. G., Gorodkova N. A., Chursin V A. Computational and experimental studies of resonant multilayer sound-absorbing structures / Vestn. PNIPU. 2015. N 1. P 5-20 [in Russian]. DOI:10.15593/perm.mech/2015.1.01

9. Inzhutov I., Melnikov P., Amelchugov S., et al. Investigation of Acoustic Impedance of a New Floor Panel / XIII International Scientific Conference Architecture and Construction. — Bristol: IOP, 2020. P 012002 [in Russian]. DOI:10.1088/1757-899X/953/1/012002

10. Madrigal-Melchor J., Enciso-Munoz A., Contreras-Solorio D., Saldana-Saldana X., Reyes-Villagrana R. A New Alternative Method for the Generation of Acoustic Filters, Modulating Acoustic Impedance: Theoretical Model / Open Journal of Acoustics. 2017. N 7. P 39-51. DOI:10.4236/oja.2017.73005

11. Suardana N., Sugita I., Wardana I. Hybrid acoustic panel: the effect of fiber volume fraction and panel thickness / Materials Physics and Mechanics. 2020. Vol. 44. N 1. P 77-82. DOI:10.18720/MPM.4412020_9

12. Abdulaziz A., Hedaya M., Elsabbagh A., et al. Acoustic emission source location in composite-honeycomb sandwich panel / International Journal of Renewable Energy Research. 2021. Vol. 11. N 2. P 851-860.

13. Bykov A., Komkin A., Moskalenko V Measurements of acoustic flow parameters in the orifice on non-linear regimes / IOP Conference Series: Materials Science and Engineering. — Moscow: Institute of Physics, 2019. P 012015 [in Russian]. DOI:10.1088/1757-899X/589/1/012015

14. Zakharov A. G., Anoshkin A. N., Pankov A. A., Pisarev P. V Acoustic resonance characteristics of two- and threelayer cellular sound-absorbing panels / Vestn. PNIPU. 2016. N46. P 144-159. DOI:10.15593/2224-9982/2016.46.08 [in Russian].

15. Radoutsky V. Yu., Shulzhenko V N., Stepanova M. N. Modern sound-absorbing materials and structures / Vestn. BGTU. 2016. N 6. P 76-79 [in Russian].


Review

For citations:


Amelchugov S.P., Mokhirev A.R., Tarasov I.V., Khramov I.V. STUDY OF THE SOUND IMPEDANCE OF A WOODEN PANEL. Industrial laboratory. Diagnostics of materials. 2022;88(11):27-31. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-ll-27-31

Views: 399


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)