DETERMINATION OF THE VOLUME FRACTION OF THE MICROPOROSITY IN NICKEL-BASED SUPERALLOY SINGLE CRYSTALS
https://doi.org/10.26896/1028-6861-2022-88-ll-32-40
Abstract
Microporosity is a dangerous defect of single crystal gas turbine blades cast from nickel-based superalloys (NBS). The volume fraction of the porosity in single crystal alloys does not exceed a few tenths of a percent, however, it can result in manyfold shortening of the lifetime of the blade material under fatigue loading. We present the results of determining the volume fraction of the porosity in single crystal NBS. Single crystals of NBS CMSX-4 obtained according to the industrial technology of manufacturing the single crystal blades of gas turbines were used as a test object. It is found that the applied methods, with the exception of optical microscopy, have an accuracy sufficient for measuring the volume fraction of the microporosity of about 0.2 %vol. The highest accuracy with a statistical error of about ±0.01 %vol. was attained using the Archimedes method using distilled water as a liquid. The method provides the determination of small (up to a few hundredths of a percent by volume) increase of the porosity during high-temperature creep. The results obtained can be used for precise determination of the porosity in NBS single crystals before and after service. Moreover, the process of high-temperature creep can be modeled using a correlation relationship between an increase in the porosity of single crystal material and the accumulated creep strain.
About the Authors
A. I. EpishinRussian Federation
Alexander I. Epishin
142432, Moscow obl., Chernogolovka, ul. Akademika Osipyana, 8
M. I. Alymov
Russian Federation
Mikhail I. Alymov
142432, Moscow obl., Chernogolovka, ul. Akademika Osipyana, 8
References
1. Naze L., Maurel V, Eggeler G., et al. Nickel base single crystals across length scales. — Amsterdam: Elsevier, 2021. — 610 p.
2. Petrushin N. V, Visik E. M., Elyutin E. S. Improvement of the chemical composition and structure of castable nickel-based superalloy with low density. Part 1 / Tr. VIAM. 2021. Vol. 97. N 3 [in Russian]. DOI:10.18577/2307-6046-2021-0-3-3-15
3. Petrushin N. V, Visik E. M., Elyutin E. S. Improvement of the chemical composition and structure of castable nickel-based superalloy with low density. Part 2. / Tr. VIAM. 2021. Vol. 98. N 4. P 3-15 [in Russian]. DOI:10.18577/2307-6046-2021-0-4-3-15
4. Lecomte-Beckers J. Study of microporosity formation in nickel-base superalloys / Metall. Trans. A. 1988. Vol. 19. N 9. P 2341-2348. DOI:10.1007/BF02645058
5. Toloraya V N., Zuev A. G., Svetlov I. L. Effect of conditions of directed solidification and heat treatment on porosity in creep resistant nickel alloy single crystals / Izv. AN SSSR. Metally 1991. N 5. P 70-75 [in Russian].
6. Visik E. M., Filonova E. V, Echin А. В., Chabina E. B. The effect of conditions of directional crystallization on the structure of cast blades made of nickel superalloys / Zavod. Lab. Diagn. Mater. 2022. Vol. 88. N 5. P 34-41 [in Russian]. DOI:10.26896/1028-6861-2022-88-5-34-41
7. Anton D. L., Giamei A. F. Porosity distribution and growth during homogenization in single crystals of a Nickel-base superalloy / Mater. Sci. Eng. A. 1985. Vol. 76. P 173-180. DOI:10.1016/0025-5416(85)90091-6
8. Epishin A., Link Т., Svetlov I., et al. Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys / Int. J. Mater. Res. 2013. Vol. 104. N 8. P 776-782. DOI:10.3139/146.110924
9. Comenda J., Henderson P. Growth of pores during the creep of a single crystal nickel-dase superalloys / Scripta Mater. 1977. Vol. 37. N 1. P 1821-1826.
10. Epishin A., Link T. Mechanisms of high-temperature creep of nickel-based superalloys under low applied stresses / Philos. Mag. 2004. Vol. 84. N 19. P 1979-2000. DOI:10.1080/14786430410001663240
11. le Graverend J.-B., Adrien J., Cormier J. Ex-situ X-ray tomography characterization of porosity during high-temperature creep in a Ni-based single-crystal superalloy: Toward understanding what is damage / Mater. Sci. Eng. A. 2017. Vol. 695. P 367-378. DOI:10.1016/j.msea.2017.03.083
12. Fullagar K., Broomfield R., Hulands M., et al. Aero engine test experience with CMSX-4® alloy single-crystal turbine blades / J. Eng. Gas Turbines Power. 1996. Vol. 118. N 2. P 380-388. DOI:10.1115/1.2816600
13. Epishin A., Link Т., Fedelich В., et al. Hot isostatic pressing of single-crystal nickel-base superalloys: mechanism of pore closure and effect on mechanical properties / MATEC Web Conf 2014. Vol. 14. 08003. DOI:10.1051/matecconf/20141408003
14. Touratier E, Viguier В., Siret C, et al. Dislocation mechanisms during high temperature creep experiments on MC2 alloy / Adv. Mater. Res. 2011. Vol. 278. P 7-12. DOI:10.4028/www.scientific.net/AMR.278.7
15. Jacques A., Trehorel R., Schenk T. High-temperature dislocation climb in the y' rafts of single-crystal superalloys: the hypothesis of a control by dislocation entry into the rafts / Metall. Mater. Trans. A. 2018. Vol. 49. P 4110-4125. DOI:10.1007Ы1661-018-4770-5
16. Gauzner S. I., Kivilis S. S., Osokina A. P., Pavlovskii A. N. Measurement of mass, volume, and density. — Moscow: Izd. standartoy, 1972. — 623 p. [in Russian].
17. Stock S. R. MicroComputed Tomography Methodology and Application. — CRC Press, 2022. — 392 p.
18. Camin В., Hansen L. In situ 3D-p-tomography on particle-reinforced light metal matrix composite materials under creep conditions / Metals. 2020. Vol. 10. N 8. P 1034. DOI:10.3390/metl0081034
19. Epishin A., Camin В., Hansen L., et al. Synchrotron sub-p X-ray tomography of Kirkendall porosity in a diffusion couple of nickel-base superalloy and nickel after annealing at 1250°C / Adv. Eng. Mater. 2021. Vol. 23. N 4. 2001220. DOI:10.1002/adem.202001220
20. Harris K., Erickson G., Sikkenga S., et al. Development of two rhenium containing superalloys for single crystal blade and dfrectionally solidified vane applications in advanced turbine engines / J. Mater. Eng. Perform. 1993. Vol. 4. N 2. P 481-487. DOI:10.1007/BF02661730
21. Svetlov I. L., Kuleshova E. A., Monastyrsky V P., et al. The influence of directional solidification on the phase composition and disperse structure of nickel base alloys / Izv. AN SSSR. Metally. 1991. N 1. P 86-93 [in Russian].
22. Garber R. I., Kogan V S., Polyakov L. M. Growth and dissolution of pores in crystals / Zh. Eksp. Teor. Fiz. 1958. Vol. 35. N 6. P 1364-1368 [in Russian].
23. Schmidt R. L., Randall J. C, Clever H. L. The surface tension and density of binary hydrocarbon mixtures: benzene-rehexane and benzene-re-dodecane / J. Phys. Chem. 1966. Vol. 70. P 3912-3916. DOI:10.1021/jl00884a027
24. Jang G. M., Kim N. I. Surface tension, light absorbance, and effective viscosity of single droplets of water-emulsified re-decane, re-dodecane, and re-hexadecane / Fuel. 2019. Vol. 240. P 1-9. DOI:10.1016/j.fuel.2018.11.138
25. Speight J. G. The properties of water. — Oxford: Butterworth-Heinemann, 2020. DOI:10.1016/B978-0-12-803810-9.00002-4
26. Tanaka M., Girard G., Davis R., et al. Recommended table for the density of water between 0°C and 40°C based on recent experimental reports / Metrologia. 2001. Vol. 38. P 301-309.
27. Khasanshin T. S., Shchamialiou A. P., Poddubskij O. G. Thermodynamic Properties of Heavy re-Alkanes in the Liquid State: re-Dodecane. / Int. J. Thermophys. 2003. Vol. 24. P 1277-1289. DOI:10.1023/A:1026199017598
Review
For citations:
Epishin A.I., Alymov M.I. DETERMINATION OF THE VOLUME FRACTION OF THE MICROPOROSITY IN NICKEL-BASED SUPERALLOY SINGLE CRYSTALS. Industrial laboratory. Diagnostics of materials. 2022;88(11):32-40. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-ll-32-40