STUDY OF THE INHOMOGENEOUS ABSORPTION OF X-RAY RADIATION BY A SPHERICAL CRYSTAL SAMPLE
https://doi.org/10.26896/1028-6861-2022-88-ll-41-45
Abstract
When studying the absorption of X-rays, that the linear absorption coefficient is usually assumed constant throughout the entire volume of the sample under study. However, it can vary in different parts of the crystal, e.g., due to defects present or inhomogeneous inclusion of impurity and doping elements. The results of studying the features of X-ray absorption by a spherical crystalline sample under an assumption that the absorption coefficient is described by a certain function of coordinates are presented. Methods for correcting the diffraction data for such crystals, as well as numerical calculations of the absorption corrections for reflection intensities are proposed. It is shown that the inhomogeneity of absorption in a spherical sample can have a significant effect on the intensity of reflections recorded during a diffraction experiment in the framework of X-ray diffraction analysis (XKD). It is revealed that the attenuation coefficient of a diffracted beam depends on the direction of the absorption coefficient gradient. The results obtained can be used in precision X-ray diffraction analysis of the crystals of some solid solutions. The results of modeling the absorption of X-ray radiation by the samples with different laws of change in the absorption coefficient can be used to identify samples with an inhomogeneous composition.
About the Authors
M. V. KudryashovRussian Federation
Mikhail V Kudryashov
603022, Nizhny Novgorod, pr. Gagarina, 23
N. V. Somov
Russian Federation
Nikolay V Somov
603022, Nizhny Novgorod, pr. Gagarina, 23
References
1. Maslen E. N. X-ray absorption / International Tables for Crystallography. 2004. Vol. С Sect. 6.3. P 599-608. DOI:10.1107/97809553602060000103
2. Hu H.-C, Yang C, Zhao K. Absorption correction A* for cylindrical and spherical samples with extended range and high accuracy calculated by the Thorkildsen and Larsen analytical method / Acta Cryst. 2012. Vol. A68. P 778-779. DOI:10.1107/S0108767312039505
3. Dudka A. E Structural analysis by reduced data: VI. A new method for refining the parameters of the model describing the absorption of radiation by a single-crystal specimen / Crystallography Reports. 2005. Vol. 50. N 6. P 1068-1072. DOI:10.1134/1.2132419
4. Blessing R. H. An Empirical correction for absorption anisotropy / Acta Cryst. 1995. Vol. A51 P 33-38. DOI:10.1107/S0108767394005726
5. Schutt С. E., Evans P. R. Relative absorption correction for rotation film data / Acta Cryst. 1985. Vol. A41 P 568-570. DOI:10.1107/S0108767385001234
6. Parkin S., Moezzi В., Hope H. XABS2: an empirical absorption correction program / Journal of Applied Crystallography. 1995. Vol. 28. P 53-56. DOI:10.1107/S0021889894009428
7. Leal R., Teixeira S., Rey V, et al. Absorption correction based on a three-dimensional model reconstruction from visual images / Journal of Applied Crystallography. 2008. Vol. 41. P 729-737. DOI:10.1107/S0021889808011898
8. Babichev A. V, Gladyshev A. G., Dyudelev V V, et al. Heterostructures of quantum-cascade lasers in the 4.6 pm spectral range for realizing cw generation / Letters to the Fis'ma Zh. Tekhn. Fiz. 2020. Vol. 46. N 9. P 35-38 [in Russian]. DOI:10.21883/FJTE2020.09.49371.18243
9. Bazovkin V. M., Dvoretsky S. A., Zverev A. V, et al. Silicon readout integrated circuits for IR photodetectors based on cadmium-mercury-tellurium solid solutions / Tekhn. Radiosvyazi. 2019. N 1. P 88-102 [in Russian]. DOI:10.33286/2075-8693-2019-40-88-102
10. Kirovskaya I. A., Chernous N. V., Mironova E. V., Ekkert A. O. Solid solutions of the InSb — ZnS heterosystem as primary converters of semiconductor sensors / Omsk. Nauch. Vestn. 2021. N 5. P 68-73 [in Russian]. DOI:10.25206/1813-8225-2021-179-68-73
11. Salimgareev D. D., Yuzhakova A. A., Lvov A. E., et al. Crystals of the AgBr — Agl system for the manufacture of infrared light guides / Foton-ekspress. 2021. N 6. P 79-80 [in Russian]. DOI:10.24412/2308-6920-2021-6-78-79
12. Aidaraliev M., Zotova N., Karandashev S., et al. GalnFAsSb/InAs isoperiodic structures for infrared optoelectronic devices / Fiz. Tekhn. Foluprovodnikov. 2002. Vol. 36. N 8. P 1010-1015 [in Russian].
13. Karpov M. G., Shareiko V V Using the Simpson method to calculate a definite integral / Some question of analysis, algebra, geometry and mathematical education. 2020. N 10. P 89-90 [in Russian].
14. Creagh D. C, Hubbell J. H. X-ray absorption (or attenuation) coefficients / International Tables for Crystallography. 2004. Vol. С Sect. 4. 2. 4. P 220-229. DOI:10.1107/97809553602060000103
15. Hari Babu V, Subba Rao U. V. Growth and characterization of alkali halide mixed crystals / Frogress in Crystal Growth and Characterization. 1984. Vol. 8. N 3. P 189-260. DOI:10.1016/0146-3535(84)90002-9
Review
For citations:
Kudryashov M.V., Somov N.V. STUDY OF THE INHOMOGENEOUS ABSORPTION OF X-RAY RADIATION BY A SPHERICAL CRYSTAL SAMPLE. Industrial laboratory. Diagnostics of materials. 2022;88(11):41-45. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-ll-41-45