Preview

Industrial laboratory. Diagnostics of materials

Advanced search

LOCAL INDENTATION AS METHOD OF REDUCING FATIGUE CRACK GROWTH RATE

https://doi.org/10.26896/1028-6861-2022-88-ll-46-54

Abstract

The possibility of a significant decrease in the growth rate of a fatigue crack is studied. The goal can be attained by creating a local field of residual stresses near the crack tip which arises due to the indentation of a spherical indenter. A methodology and program algorithm (in ANSYS) have been developed for numerical simulation of the problem in a three-dimensional formulation of the process of fatigue crack growth in the field of residual stresses. Considering the prospects of developing the technique with regard to the use of dynamic indentation, the ANSYS Explicit STR solver fully integrated into the calculation module was used in the macro. Proceeding from the solution of the elastoplastic problem the program provides determination of the fields of residual stresses (RS) at the first stage of the calculation and numerical simulation of the fatigue crack growth on the second stage. The effect of the indentation parameters (magnitude of the force applied to the indenter and the location of the indentation point, conditions of fixing) on the crack growth rate is considered. Methods for a significant reduction in the crack growth rate based on multiple preliminary indentation are substantiated. Using the developed program, we managed to solve a series of problems regarding the effect of different types of loading and fastenings on the growth rate of a fatigue crack in a plate with a through crack. The use of one-sided indentation of thin-walled objects with cracks, which are installed on the support surface, greatly simplifies the practical application of the technique for creating a residual stress field in the vicinity of the crack tip. It is shown that with multiple indentation along the crack propagation line, the fatigue crack growth rate is significantly lower than that when using a single indenter.

About the Authors

A. A. Fedorov
Mechanical Engineering Research Institute of RAS
Russian Federation

Alexandr A. Fedorov

101990, Moscow, Maly Kharitonievskii per., 4



I. A. Razumovskii
Mechanical Engineering Research Institute of RAS
Russian Federation

Igor A. Razumovskii

101990, Moscow, Maly Kharitonievskii per., 4



Y. G. Matvienko
Mechanical Engineering Research Institute of RAS
Russian Federation

Yuri G. Matvienko

101990, Moscow, Maly Kharitonievskii per., 4



References

1. Vorob'ev R. A., Litovchenko V. N., Dubinskii V N. Study of the Hardness and Modulus of Elasticity of Ferrite using Kinetic Indentation Method / Zavod. Lab. Diagn. Mater. 2016. Vol. 82. N 5. P 55-60 [in Russian].

2. Matyunin V M., Terent'ev V F, Marchenkov A. Yu., Slizov A. K. Determination of Hardness and Other Mechanical Froperties of Thin-sheet Trip Steels by Indentation / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 7. P 49-53 [in Russian].

3. Rudnitskii V. A., Kren' A. P., Lantsman G. A. Determining yield strength of metals by microindentation with a spherical tip / Defektoskopiya. 2019. N 2. P 61-66 [in Russian].

4. Lyapunova E. A., Chudinov V V., Uvarov S. V Dynamic indentation of alumina ceramics / Fizika. 2016. N 3(34). P 59-64 [in Russian].

5. Kruzic J. J., Kim D. K., Koester K. J., Ritchie R. O. Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues / J. Mech. Behav. Biomed. Mater. 2009. N 2. P 384-395.

6. Baron A. A. Assessment of steels fracture toughness by means of indentation technics / Izv. Volgograd. Gos. Tekhn. Univ. 2019. N 6(229). P 69-73 [in Russian].

7. Konovalov D. A., Golubkova I. A., Smirnov S. V Determination of strength properties of individual layers of deformed layered composites by kinetic indentation / Defektoskopiya. 2011. N 12. P 91-98 [in Russian].

8. Chernyatin A. S., Razumovskii I. A. The method of indentation as a way to assess the loading and degradation of the mechanical characteristics of the material / Probl. Mashinostr. Nadezhn. Mashin. 2015. N 4. P 40-48 [in Russian].

9. Ilinskiy A. V, Fedorov A. V, Stepanova K. A., et al. Study of the dynamic hardness of structural metal materials / Zavod. Lab. Diagn. Mater. 2020. Vol. 86. N 1. P 57-61 [in Russian]. DOI:10.26896/1028-6861-2020-86-1-57-61

10. Matyunin V M., Marchenkov A. Yu., Volkov P. V, Demidov A. N. Diagnosis of the Mechanical Properties of Materials from the Indentation Diagrams at Different Scale Levels / Zavod. Lab. Diagn. Mater. 2015. Vol. 81. N 4. P 47-52 [in Russian].

11. Matyunin V M., Marchenkov A. Yu., Abusaif N., Stasenko N. A. Evaluation of the elastic compliance of the hardness tester in kinetic indentation tests / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 4. P 57-63 [in Russian]. DOI:10.26896/1028-6861-2019-85-4-57-63

12. Razavi S. M. J., Ayatollahi M. R., Amouzadi A., Berto F. Effects of different indentation methods on fatigue life extension of cracked specimens / FFEMS (Fatigue & Fracture of Engineering Materials & Structures). 2017. N 41. P 287-299.

13. Razavi S. M. J . A. M. R., F. B. Assessment of fatigue crack growth behavior of cracked specimens / Procedia Structural Integrity. 2018. N 13. P 69-73.

14. Won-Kyun L., Jeong-Hoon S., Bhavavi V S. Effect of ring indentation on fatigue crack growth in an aluminum plate / International Journal of Fatigue. 2003. N 25. P 1271-1277.

15. DIN EN 10025-3-2019. Hot rolled products of structural steels. Part 3: Technical delivery conditions for normalized/normalized rolled wieldable fine grain structural steels.

16. Deulin E. A., Mikhailov V P., Panfilov Yu. V., Nevshupa R. A. Mechanics and Physics of Precise Vacuum Mechanisms. — Springer, 2010. P 34.

17. Albuquerque C. M. C, Miranda R. M. C, Richter-Trummer V, de Figueredo M. A. V, Calcada R., de Castro P. M. S. T. Fatigue crack propongation behavior in thick steel weldments / Int J Struct Integr. 2012. N 3(2). P 184-203.

18. ANSYS Inc. PDF Documentation for Release 2021 Rl, Fracture Analysis Guide, January 2021.

19. Matvienko Y. G., Razumovskii I. A., Fedorov A. A. Numerical modeling the effect of static indentation on the rate and the fatigue crack growth trajectory / Journal of Physics: Conference Series. 22. Ser. "XXII Winter School on Continuous Media Mechanics, WSCMM 2021". 2021. P 012039.


Review

For citations:


Fedorov A.A., Razumovskii I.A., Matvienko Y.G. LOCAL INDENTATION AS METHOD OF REDUCING FATIGUE CRACK GROWTH RATE. Industrial laboratory. Diagnostics of materials. 2022;88(11):46-54. (In Russ.) https://doi.org/10.26896/1028-6861-2022-88-ll-46-54

Views: 233


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)