Preview

Заводская лаборатория. Диагностика материалов

Расширенный поиск

A Walker-based mean strain correction models for low-cycle fatigue life prediction

https://doi.org/10.26896/1028-6861-2023-89-1-67-73

Аннотация

A Walker-based mean strain correction model of low-cycle fatigue (LFC) life prediction is proposed for high loaded parts. The model is based on a function depending on the strain range and strain ratio controlled in the strain-controlled LCF test of fatigue specimens and a constant reflecting the material sensitivity to strain ratio. The independence from the stress cycle parameters which can change during the strain-controlled LCF test is an obvious advantage of the model. The model was verified using the results of strain-controlled LCF tests of smooth titanium alloy Ti-6A1-4V ELI and iron-based alloy specimens conducted at room temperature. The proposed model was compared to the Smith - Watson - Topper and Walker models that take into account the mean stress effect. The proposed model provided the best prediction accuracy for titanium alloy. For Iron-based alloys the results obtained by the Walker model and the model proposed are close to each other. A simplified model based on the analysis of model parameters tailing into account the mean strain effect for predicting fatigue life of aeroengine critical parts is developed using a limited amount of experimental data when only the results of Rε = 0 tests are known. A comparison of the predicted life with the number of cycles to failure showed satisfactory results of fatigue life prediction for Ti-6A1-4V ELI and Iron-based alloys specimens.

Об авторе

A. N. Servetnik
Central Institute of Aviation Motors
Россия

Anton N. Servetnik.

2, Aviamotornaya Street, Moscow, 111116



Список литературы

1. American Society for Testing and Materials. ASTM E739-10 (2015), Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (e-N) Fatigue Data. ASTM International, West Conshohocken, PA, 2015.

2. Socie D. E., Morrow J. Review of Contemporary Approaches to Fatigue Damage Analysis / Risk Fail Anal. Improv. Perform. Reliab. 1980. P 141 - 194.

3. Smith K., Watson P., Topper T. H. A Stress-Strain Function for the Fatigue of Metals / J. Mater. JMLSA. 1970. N 5. P. 767 -778.

4. Walker K. The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum / Eff. Environ. Complex Load Hist. Fatigue Life. March 1970. P. 1 - 14.

5. Manson S. S., Halford G. R. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage / Int. J. Fract. 1981. Vol. 17. P. 169 - 192.

6. Lorenzo E, Laird C. A new approach to predicting fatigue life behavior under the action of mean stresses / Mater. Sci. Eng. 1984. N 62. P. 205 - 210. DOI:10.1016/0025-5416(84)90223-4

7. Ince A., Glinka G. A modification of Morrow and Smith — Watson — Topper mean stress correction models / Fatigue Fract. Eng. Mater. Struct. 2011. N 34. P. 854 - 867. DOI:10.1111/j.1460-2695.2011.01577.x

8. Yuan X., Yu W., Fu S., et al. Effect of mean stress and ratcheting strain on the low cycle fatigue behavior of a wrought 316LN stainless steel / Mater. Sci. Eng. A. 2016. N 677. P. 193 - 202. DOI: 10.1016/j.msea.2016.09.053

9. Ince A. A mean stress correction model for tensile and compressive mean stress fatigue loadings / Fatigue Fract. Eng. Mater. Struct. 2017. N 40. P. 939 - 948. DOI: 10.1111/ffe.12553

10. Bergman J., Seeger T. On the influence of cyclic stress-strain curves, damage parameters and various evaluation concepts on the life prediction by the local approach. In: Proceedings of the 2nd European Conference on Fracture, Darmstadt, Germany. VDI-Report of Progress. Vol. 18. 1979.

11. Dowling N. E. Mechanical Behavior of Materials. — Prentice Hall, 2012.

12. Niliei M., Heuler P., Boiler C., Seeger T. Evaluation of mean stress effect on fatigue life by use of damage parameters / Int. J. Fatigue. 1986. N 8. P. 119 - 126. DOI: 10.1016/0142-1123(86)90002-2

13. Kujawski D. A deviatoric version of the SWT parameter / Int. J. Fatigue. 2014. Vol. 67. P. 95 - 102. DOI: 10.1016/j.ijfatigue.2013.12.002

14. Theodore N. High Cycle Fatigue: A Mechanics of Materials Perspective. — Elsevier Science, 2006.

15. Lu S., Su Y., Yang M., Li Y. A Modified Walker Model Dealing with Mean Stress Effect in Fatigue Life Prediction for Aeroengine Disks / Math. Probl. Eng. 2018. DOI: 10.1155/2018/5148278

16. Chang L., Ma T. H., Zhou B. Bin, et al. Comprehensive investigation of fatigue behavior and a new strain-life model for CP-Ti under different loading conditions / Int. J. Fatigue. 2019. Vol. 129.105220. DOI: 10.1016/j.ijfatigue.2019.105220

17. United States & Battelle Memorial Institute. MMPDS-07: Metallic materials properties development and standardization (MMPDS). — Washington, D.C.; Federal Aviation Administration. 2012.

18. Corran R. S. J., Williams S. J. Lifing methods and safety criteria in aero gas turbines / Eng. Fail Anal. 2007. N 14. P. 518-528. DOI: 10.1016/j.engfailanal.2005.08.010

19. Dua D., Vasantharao B. Life Prediction of Power Turbine Components for High Exhaust Back Pressure Applications: Part I — Disks / Proc. ASME Turbo Expo. 2015. 7A. DOI: 10.1115/GT2015-43333

20. Golowin A., Denk V., Riepe A. Probabilistic Damage Tolerance Methodology for Solid Fan Blades and Disks / Int. J. Aerospace Meeh. Eng. 2016. N 10. P. 932 - 937. DOI: 10.5281/zenodo.1124413

21. Dowling N. E., Calhoun C. A., Arcari A. Mean stress effects in stress-life fatigue and the Walker equation / Fatigue Fract. Eng. Mater. Struct. 2009. Vol. 32. P. 163 - 179. DOI: 10.1111/j.1460-2695.2008.01322.x

22. Dowling N. E. Mean stress effects in strain — life fatigue / Fatigue Fract. Eng. Mater. Struct. 2009. Vol. 32. P. 1004- 1019. DOI: 10.1111/j.1460-2695.2009.01404.X

23. Servetnik A. N. A modified Walker model for constructing a low cycle fatigue curve with mean strain effect / Aviation Engines. 2020. N 1(10). P. 39 - 46.

24. Manson S. S., Hirschberg M. H. Fatigue: An Interdisciplinary Approach. — Syracuse: Syracuse University Press, 1964.

25. Weibull W. Fatigue testing and analysis of results. — London: Pergamon Press, 1961.

26. Carrion P. E., Shamsaei N. Strain-based fatigue data for Ti-6A1-4V ELI under fully-reversed and mean strain loads / Data Brief. 2016. N 7. P. 12 - 15. DOI: 10.1016/j.dib.2016.02.014

27. Carrion R E., Shamsaei N., Daniewicz S. R., Moser R. D. Fatigue behavior of Ti-6A1-4V ELI including mean stress effects / Int. J. Fatigue. 2017. Vol. 99. P. 87 - 100. DOI: 10.1016/j.ijfatigue.2017.02.013

28. ASTM E606/E606M-12. Standard test method for strain-controlled fatigue testing. — West Conshohocken, PA: ASTM International, 2012.


Рецензия

Для цитирования:


Servetnik A.N. A Walker-based mean strain correction models for low-cycle fatigue life prediction. Заводская лаборатория. Диагностика материалов. 2023;89(1):67-73. https://doi.org/10.26896/1028-6861-2023-89-1-67-73

For citation:


Servetnik A.N. A Walker-based mean strain correction models for low-cycle fatigue life prediction. Industrial laboratory. Diagnostics of materials. 2023;89(1):67-73. https://doi.org/10.26896/1028-6861-2023-89-1-67-73

Просмотров: 605


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)