A Walker-based mean strain correction models for low-cycle fatigue life prediction
https://doi.org/10.26896/1028-6861-2023-89-1-67-73
Abstract
A Walker-based mean strain correction model of low-cycle fatigue (LFC) life prediction is proposed for high loaded parts. The model is based on a function depending on the strain range and strain ratio controlled in the strain-controlled LCF test of fatigue specimens and a constant reflecting the material sensitivity to strain ratio. The independence from the stress cycle parameters which can change during the strain-controlled LCF test is an obvious advantage of the model. The model was verified using the results of strain-controlled LCF tests of smooth titanium alloy Ti-6A1-4V ELI and iron-based alloy specimens conducted at room temperature. The proposed model was compared to the Smith - Watson - Topper and Walker models that take into account the mean stress effect. The proposed model provided the best prediction accuracy for titanium alloy. For Iron-based alloys the results obtained by the Walker model and the model proposed are close to each other. A simplified model based on the analysis of model parameters tailing into account the mean strain effect for predicting fatigue life of aeroengine critical parts is developed using a limited amount of experimental data when only the results of Rε = 0 tests are known. A comparison of the predicted life with the number of cycles to failure showed satisfactory results of fatigue life prediction for Ti-6A1-4V ELI and Iron-based alloys specimens.
About the Author
A. N. ServetnikRussian Federation
Anton N. Servetnik.
2, Aviamotornaya Street, Moscow, 111116
References
1. American Society for Testing and Materials. ASTM E739-10 (2015), Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (e-N) Fatigue Data. ASTM International, West Conshohocken, PA, 2015.
2. Socie D. E., Morrow J. Review of Contemporary Approaches to Fatigue Damage Analysis / Risk Fail Anal. Improv. Perform. Reliab. 1980. P 141 - 194.
3. Smith K., Watson P., Topper T. H. A Stress-Strain Function for the Fatigue of Metals / J. Mater. JMLSA. 1970. N 5. P. 767 -778.
4. Walker K. The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum / Eff. Environ. Complex Load Hist. Fatigue Life. March 1970. P. 1 - 14.
5. Manson S. S., Halford G. R. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage / Int. J. Fract. 1981. Vol. 17. P. 169 - 192.
6. Lorenzo E, Laird C. A new approach to predicting fatigue life behavior under the action of mean stresses / Mater. Sci. Eng. 1984. N 62. P. 205 - 210. DOI:10.1016/0025-5416(84)90223-4
7. Ince A., Glinka G. A modification of Morrow and Smith — Watson — Topper mean stress correction models / Fatigue Fract. Eng. Mater. Struct. 2011. N 34. P. 854 - 867. DOI:10.1111/j.1460-2695.2011.01577.x
8. Yuan X., Yu W., Fu S., et al. Effect of mean stress and ratcheting strain on the low cycle fatigue behavior of a wrought 316LN stainless steel / Mater. Sci. Eng. A. 2016. N 677. P. 193 - 202. DOI: 10.1016/j.msea.2016.09.053
9. Ince A. A mean stress correction model for tensile and compressive mean stress fatigue loadings / Fatigue Fract. Eng. Mater. Struct. 2017. N 40. P. 939 - 948. DOI: 10.1111/ffe.12553
10. Bergman J., Seeger T. On the influence of cyclic stress-strain curves, damage parameters and various evaluation concepts on the life prediction by the local approach. In: Proceedings of the 2nd European Conference on Fracture, Darmstadt, Germany. VDI-Report of Progress. Vol. 18. 1979.
11. Dowling N. E. Mechanical Behavior of Materials. — Prentice Hall, 2012.
12. Niliei M., Heuler P., Boiler C., Seeger T. Evaluation of mean stress effect on fatigue life by use of damage parameters / Int. J. Fatigue. 1986. N 8. P. 119 - 126. DOI: 10.1016/0142-1123(86)90002-2
13. Kujawski D. A deviatoric version of the SWT parameter / Int. J. Fatigue. 2014. Vol. 67. P. 95 - 102. DOI: 10.1016/j.ijfatigue.2013.12.002
14. Theodore N. High Cycle Fatigue: A Mechanics of Materials Perspective. — Elsevier Science, 2006.
15. Lu S., Su Y., Yang M., Li Y. A Modified Walker Model Dealing with Mean Stress Effect in Fatigue Life Prediction for Aeroengine Disks / Math. Probl. Eng. 2018. DOI: 10.1155/2018/5148278
16. Chang L., Ma T. H., Zhou B. Bin, et al. Comprehensive investigation of fatigue behavior and a new strain-life model for CP-Ti under different loading conditions / Int. J. Fatigue. 2019. Vol. 129.105220. DOI: 10.1016/j.ijfatigue.2019.105220
17. United States & Battelle Memorial Institute. MMPDS-07: Metallic materials properties development and standardization (MMPDS). — Washington, D.C.; Federal Aviation Administration. 2012.
18. Corran R. S. J., Williams S. J. Lifing methods and safety criteria in aero gas turbines / Eng. Fail Anal. 2007. N 14. P. 518-528. DOI: 10.1016/j.engfailanal.2005.08.010
19. Dua D., Vasantharao B. Life Prediction of Power Turbine Components for High Exhaust Back Pressure Applications: Part I — Disks / Proc. ASME Turbo Expo. 2015. 7A. DOI: 10.1115/GT2015-43333
20. Golowin A., Denk V., Riepe A. Probabilistic Damage Tolerance Methodology for Solid Fan Blades and Disks / Int. J. Aerospace Meeh. Eng. 2016. N 10. P. 932 - 937. DOI: 10.5281/zenodo.1124413
21. Dowling N. E., Calhoun C. A., Arcari A. Mean stress effects in stress-life fatigue and the Walker equation / Fatigue Fract. Eng. Mater. Struct. 2009. Vol. 32. P. 163 - 179. DOI: 10.1111/j.1460-2695.2008.01322.x
22. Dowling N. E. Mean stress effects in strain — life fatigue / Fatigue Fract. Eng. Mater. Struct. 2009. Vol. 32. P. 1004- 1019. DOI: 10.1111/j.1460-2695.2009.01404.X
23. Servetnik A. N. A modified Walker model for constructing a low cycle fatigue curve with mean strain effect / Aviation Engines. 2020. N 1(10). P. 39 - 46.
24. Manson S. S., Hirschberg M. H. Fatigue: An Interdisciplinary Approach. — Syracuse: Syracuse University Press, 1964.
25. Weibull W. Fatigue testing and analysis of results. — London: Pergamon Press, 1961.
26. Carrion P. E., Shamsaei N. Strain-based fatigue data for Ti-6A1-4V ELI under fully-reversed and mean strain loads / Data Brief. 2016. N 7. P. 12 - 15. DOI: 10.1016/j.dib.2016.02.014
27. Carrion R E., Shamsaei N., Daniewicz S. R., Moser R. D. Fatigue behavior of Ti-6A1-4V ELI including mean stress effects / Int. J. Fatigue. 2017. Vol. 99. P. 87 - 100. DOI: 10.1016/j.ijfatigue.2017.02.013
28. ASTM E606/E606M-12. Standard test method for strain-controlled fatigue testing. — West Conshohocken, PA: ASTM International, 2012.
Review
For citations:
Servetnik A.N. A Walker-based mean strain correction models for low-cycle fatigue life prediction. Industrial laboratory. Diagnostics of materials. 2023;89(1):67-73. https://doi.org/10.26896/1028-6861-2023-89-1-67-73