Study of the radar absorption of metal-carbon nanocomposites (review)
https://doi.org/10.26896/1028-6861-2023-89-1-35-45
Abstract
Development of the technology for the synthesis of magnetic nanoparticles of metals and alloys has opened up the possibility of their use in the field of radar-absorbing materials (RAM). The results of studying the properties of nanocomposites, method for the synthesis of metal-carbon nanocomposites by pyrolysis using infrared heating are reviewed. The magnetic, electromagnetic, and radar-absorbing properties of the obtained nanocomposites depending on the synthesis temperature and metal concentration were studied. It is shown that the chosen metals, alloys (FeCo) and carbon material are effective for isolating magnetic nanoparticles when developing hybrid radar-absorbing composites. Moreover, methods for controlling the radar-absorbing properties of hybrid composites and the prospects for improving the impedance matching are considered. An analysis of the efficiency of absorption of electromagnetic radiation by FeCo/C nanocomposites synthesized by different methods is presented. The possibility of controlling the morphology and properties of metal-carbon nanocomposites using certain approaches to synthesis, varying the compositions of precursors, and the orientation of FeCo nanoparticles synthesized in the form of flakes in the composite has been revealed. The results of the study can be used to improve the technique of using FeCo/C nanocomposites obtained by pyrolysis of organometallic precursors based on polyacrylonitrile in the field of radar-absorbing materials.
About the Authors
D. G. MuratovRussian Federation
Dmitry G. Muratov.
4, Leninsky prosp., Moscow, 119049; 29, Leninsky prosp., Moscow, 119991
L. V. Kozhitov
Russian Federation
Lev V. Kozhitov.
4, Leninsky prosp., Moscow, 119049
A. V. Popkova
Russian Federation
Alena V. Popkova.
24, Zheleznodorozhnaya ul., Podolsk, Moscow obl., 142103
E. Yu. Korovin
Russian Federation
Evgeny Yu. Korovin.
36, prosp. Lenina, Tomsk, 634050
E. V. Yakushko
Russian Federation
Egor V. Yakushko.
38, Bolshaya Semyonovskaya ul., Moscow, 107023
M. R. Bakirov
Russian Federation
Muslim R. Bakirov.
4, Leninsky prosp., Moscow, 119049
References
1. Sun X., Не J., Li G., et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties / Mater. Chem. C. 2013. Vol. 1. P. 765 - 777. DOI: 10.1039/C2TC00159D
2. Zhao B., Fan B., Shao G., et al. Investigation on the electromagnetic wave absorption properties of Ni chains synthesized by a facile solvothermal method / Appl. Surf. Sci. 2014. Vol. 307. P. 293 - 300. DOI: 10.1016/j.apsusc.2014.04.029
3. Wang Y., Chen D., Yin X., et al. Hybrid of MoS2 and Reduced Graphene Oxide: A Lightweight and Broadband Electromagnetic Wave Absorber / ACS Appl. Mater. Interfaces. 2015. Vol. 7. P. 26226 - 26234. DOI: 10.1021/acsami.5b08410
4. Yan L. G., Wang J. B., Han X. H., et al. Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell / Nanotechnology. 2010. Vol. 21. P. 095708. DOI: 10.1088/0957-4484/21/9/095708
5. Zhang X., Dong X., Huang H., et al. Microwave absorption properties of the carbon-coated nickel nanocapsules / Appl. Phys. Lett. 2006. Vol. 89. P. 053115. DOI: 10.1063/1.2236965
6. Chen Y. H., Huang Z. H., Lu M. M., et al. 3D Fe3O4 nanocrystals decorating carbon nanotubes to tune electromagnetic properties and enhance microwave absorption capacity / J. Mater. Chem. A. 2015. Vol. 3. P. 12621 - 12625. DOI: 10.1039/C5TA02782A
7. Zhuo R., Feng H., Liang Q., et al. Morphology-controlled synthesis, growth mechanism, optical and microwave absorption properties of ZnO nanocombs / Appl. Phys. 2008. Vol. 41. P. 185405. DOI: 10.1088/0022-3727/41/18/185405
8. Zhao B., Fan B., Shao G., et al. Investigation on the electromagnetic wave absorption properties of Ni chains synthesized by a facile solvothermal method / Appl. Surf. Sci. 2014. Vol. 307. P. 293 - 300. DOI: 10.1016/j.apsusc.2014.04.029
9. Qiu X., Wang L., Zhu H., et al. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon / Nanoscale. 2017. Vol. 9. P. 7408 - 7418. DOI: 10.1039/C7NR02628E
10. Wang X., Gong R., Luo H., et al. Microwave properties of surface modified Fe - Co - Zr alloy flakes with mechanochemically synthesized polystyrene / J. Alloys Compd. 2009. Vol. 480. P. 761 - 764. DOI: 10.1016/j.jallcom.2009.02.037
11. Yan L., Wang J., Han X., et al. Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell / Nanotechnology. 2010. Vol. 21. P. 095708. DOI: 10.1088/0957-4484/21/9/095708
12. Zhang X., Dong X., Huang H., et al. Microwave absorption properties of the carbon-coated nickel nanocapsules / Appl. Phys. Lett. 2006. Vol. 89. P. 053115. DOI: 10.1063/1.2236965
13. Liu X. G., Qu Z. Q., Geng D. Y., et al. Influence of a graphite shell on the thermal and electromagnetic characteristics of FeNi nanoparticles / Carbon. 2010. Vol. 48. P. 891 - 897. DOI: 10.1016/j.carbon.2009.11.011
14. Sun X., He J., Li G., et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties / Mater. Chem. C. 2013. Vol. 1. P. 765 - 777. DOI: 10.1039/C2TC00159D
15. Zhang X., Dong X., Huang H., et al. Microwave absorption properties of the carbon-coated nickel nanocapsules / Appl. Phys. Lett. 2006. Vol. 89. P. 053115. DOI: 10.1063/1.2236965
16. Matsumoto M., Miyata Y. Thin electromagnetic wave absorber for quasi-microwave band containing aligned thin magnetic metal particles / IEEE Trans. Magn. 1997. Vol. 33. P. 4459. DOI: 10.1109/20.649882
17. Meng X., Wan Y., Li Q., et al. The electrochemical preparation and microwave absorption properties of magnetic carbon fibers coated with Fe3O4 films / Appl. Surf. Sci. 2011. Vol. 257. P. 10808-10814. DOI: 10.1016/j.apsusc.2011.07.108
18. Kozhitov L. V., Muratov D. G., Kostishin V. G., et al. Synthesis, magnetic and electromagnetic properties of FeCo/C nanocomposites / Zh. Neorg. Khimii. 2017. Vol. 62. N 11. P. 1507 -1514 [in Russian]. DOI: 10.7868/S0044457X17110137
19. Yang J., Cui C., Yang W., et al. Electrochemical fabrication and magnetic properties of Fe7Co3 alloys nanowire array / J. Mater. Sci. 2011. Vol. 46. P. 2379 - 2383. DOI: 10.1007/s10853-010-5085-0
20. Wang Y., Sun Y., Zong Y., et al. Carbon nanofibers supported by FeCo nanocrystals as difunctional magnetic/dielectric composites with broadband microwave absorption performance / J. Alloy. Compd. 2020. Vol. 824. P. 153980. DOI: 10.1016/j.jallcom.2020.153980
21. Li D., Zhang B., Liu W., et al. Tailoring the input impedance of FeCo/C composites with efficient broadband absorption / Dalton trans. 2017. Vol. 46. P. 14926. DOI: 10.1039/C7DT02840G
22. Chokprasombat K., Harding P., Pinitsoontorn S., et al. Morphological alteration and exceptional magnetic properties of air-stable FeCo nanocubes prepared by chemical reduction method / J. Magnetism Magnetic Mater. 2014. Vol. 396. P. 228 -233. DOI: 10.1016/j.jmmm.2014.06.042
23. Zhang Y., Wang R, Wang Y., et al. Synthesis and excellent electromagnetic wave absorption properties of parallel aligned FeCo/C core-shell nanoflake composites / J. Mater. Chem. C. 2015. Vol. 3. P. 10813. DOI: 10.1039/C5TC02146D
24. Nautiyal P., Seikh Md. M., Lebedev O., et al. Sol-gel nythesis of FeCo nanoparticles and magnetization study I J. Magnetism Magnetic Mater. 2015. Vol. 377. P. 402 - 405. DOI: 10.1016/j.jmmm.2014.10.157
25. Ang K., Alexandrou L., Mathur N., et al. The effect of carbon encapsulation on the magnetic properties of Ni nanopartic les produced by arc discharge in de-ionized water / Nanotechnology. 2004. Vol. 15. P. 520. DOI: 10.1088/0957-4484/15/5/020
26. Afghahi S. S., Shokuhfar A. S. Two-step synthesis, electromagnetic and microwave absorbing properties of FeCo/C coreshell nanostructure /J. Magnetism and Magnetic materials. 2014. P. 37-44. DOI: 10.1016/j.jmmm.2014.06.040
27. Ibrahim E., Silke Hampel, Wolter A., et al. Superparamag-netic FeCo and FeNi Nanocomposites Dispersed in Submicrometer-Sized C Spheres / J. Physical Chemistry. 2012. Vol. 116. P. 22509-22517. DOI: 10.1021/jp304236x
28. Liu Q., Cao B., Feng C., et al. High permittivity and microwave absorption of porous graphitic carbons encapsulating Fe nanoparticles I/ Compos. Sci. Technol. 2012. P. 1632 - 1636. DOI: 10.1016/j.compscitech.2012.06.022
29. Yang Y., Qia S., Wang J. Preparation and microwave absorbing properties of nicel-coated graphite nanosheet with pyrrole via in situ polymerization / J. Alloys Comp. 2012. P. 114 - 121. DOI: 10.1016/j.jallcom.2011.12.136
30. Zhao D., Zhang J., Li X., et al. Electromagnetic and microwave absorbing properties of Co Filled carbon nanotubes / J. Alloys Comp. 2010. Vol. 505. P. 712 - 716. DOI: 10.1016/j.jallcom.2010.06.122
31. Zhang T., Huang D., Yang Y., et al. Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance / Mater. Sci. Eng. B. 2013. Vol. 178. P. 1 - 9. DOI: 10.1016/j.mseb.2012.06.005
32. Wang B., Zhang J., Wang T., et al. Synthesis and enhanced microwave absorption properties of Ni/Ni2O3 core-shell particles / J. Alloys Comp. 2013. Vol. 567. P. 21 - 25. DOI: 10.1016/j.jallcom.2013.03.028
33. Xiang J., Zhang X., Ye Q., et al. Synthesis and characterization of FeCo/C hybrid nanofibers with high performance of microwave absorption / Mater. Res. Bull. 2014. P. 589 - 595. DOI: 10.1016/j.materresbull.2014.09.032
34. Li X., Huang C., Wang Z., et al. Enhanced electromagnetic wave absorption of layered FeCo/carbon nanocomposites with a low filler loading / J. Alloys Comp. 2021. Vol. 879. P. 160465. DOI: 10.1016/j.jallcom.2021.160465
35. Liu D., Qiang R., Du Y., et al. Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption / J. Colloid Interface Sci. 2018. Vol. 514. P. 10 - 20. DOI: 10.1016/j.jcis.2017.12.013
36. Karpenkov D. Y., Muratov D. G., Kozitov L. V., et al. Infrared heating mediated synthesis and characterization of FeCo/C Nanocomposites/J. Magnetism Magnetic Mater. 2017. Vol. 429. P. 94-101. DOI: 10.1016/j.jmmm.2017.01.008
37. Vasilev A. A., Dzidziguri E. L., Muratov D. G., et al. Fe-Со metal-carbon nanocomposite based on ir-pyrolized polyvinyl alcohol / Russ. J. Phys. Chem. A. 2017. Vol. 91. N 5. P. 926 - 930. DOI: 10.1134/S0036024417050284
38. Vasilev A. A., Muratov D. G., Bondarenko G. N., et al. Synthesis of iron and cobalt nanoparticles in an ir-pvrolyzed chitosan matrix / Phys. Chem. 2018. Vol. 92. N 10. P. 2009 - 2014. DOI: 10.1134/S0036024418100369
39. Rahaman M., Ismail A., Mustafa A. A review of heat treatment on polyacrylonitrile fiber / Polymer Degradation and Stability. 2007. Vol. 92. P. 1421 - 1432. DOI: 10.1016/j.polymdegradstab.2007.03.023
40. Chu W., Wang Y., Du Y., et al. FeCo alloy nanoparticles supported on ordered mesoporous carbon for enhanced microwave absorption / J. Mater. Sci. 2017. Vol. 52. P. 13636 - 13649. DOI: 10.1007/S10853-017-1439-1
41. Chu W., Tian C., Wang Y., et al. Performance vs convenience of magnetic carbon-metal nanocomposites: a low-cost and facile citrate-derived strategy for FeCo alloy/carbon composites with high-performance microwave absorption / Comments Inorg. Chem. 2017. Vol. 37. P. 301 - 326. DOI: 10.1080/02603594.2017.1374257
42. Liu X., Geng D., Ma S., et al. Electromagnetic-wave absorption properties of FeCo nanocapsules and coral-like aggregates self-assembled by the nanocapsules / J. Appl. Phys. 2008. Vol. 104. 064319 DOI: 10.1063/1.2982411
43. Ding L., Huang Y., Liu X., et al. Broadband and multilayer core-shell FeCo/C/mSiO2 nanoparticles for microwave absorption / J. Alloy. Comp. 2020. Vol. 812. P. 152168. DOI: 10.1016/j.jallcom.2019.152168
44. Wang C., Wang N., Han X., et al. Core-shell FeCo/carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption / Carbon. 2019. Vol. 145. P. 701 - 711. DOI: 10.1016/j.carbon.2019.01.082
Review
For citations:
Muratov D.G., Kozhitov L.V., Popkova A.V., Korovin E.Yu., Yakushko E.V., Bakirov M.R. Study of the radar absorption of metal-carbon nanocomposites (review). Industrial laboratory. Diagnostics of materials. 2023;89(1):35-45. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-1-35-45