Optical strain measurement technique for estimating degradation of the properties of carbon fiber reinforced polymer composites under cyclic loading
https://doi.org/10.26896/1028-6861-2023-89-1-46-55
Abstract
The goal of the study is the fatigue process in polyimide-based composites reinforced with short carbon fibers. Parameters of mechanical hysteresis loops such as the loop area, secant and dynamic moduli were used in the study. Hysteresis loops were constructed using the developed hardware and software system based on the optical method of strain measurements using a digital image correlation (DIC) technique. Methods for calculating the moduli and the parameters of mechanical hysteresis loops is considered. The results of their evaluation and the experimental data on the fatigue behavior of polyimide-based composites reinforced with short carbon fibers are presented. It is shown that an important quantitative measure of the differences in the fatigue behavior of the studied composites is the hysteresis induced energy loss. For a composite with carbonized fibers, the energy loss level per cycle is 35 kJ/m3, whereas for a composite with graphitized fibers it is 34% lower (23 kJ/m3). At the same time, the fatigue durability of the latter is - 40 times lower. A decrease both in the secant modulus (up to 11%) and the dynamic modulus (up to 3.5%) was observed in cyclic tests. However, the reduction was twice as much in a composite with carbonized fibers possessing a longer durability. Thus, the DIC-based estimation of mechanical hysteresis loops by the parameters of the secant and dynamic moduli, as well as the loop area can be successfully used to interpret the difference in the fatigue characteristics at the stage of scattered damage accumulation, whereas an unambiguous prediction of the residual life appeared impossible. The problem requires further systematic studying using approaches of the fracture mechanics.
About the Authors
S. V. PaninRussian Federation
Sergey V. Panin.
2/4, Akademicheskii prosp., Tomsk, 634055; 30, prosp. Lenina, Tomsk, 634050
A. A. Bogdanov
Russian Federation
Alexey A. Bogdanov.
2/4, Akademicheskii prosp., Tomsk, 634055; 30, prosp. Lenina, Tomsk, 634050
P. S. Lyubutin
Russian Federation
Pavel S. Lyubutin.
2/4, Akademicheskii prosp., Tomsk, 634055
A. V. Eremin
Russian Federation
Alexander V. Eremin.
2/4, Akademicheskii prosp., Tomsk, 634055; 30, prosp. Lenina, Tomsk, 634050
D. G. Buslovich
Russian Federation
Dmitry G. Buslovich.
2/4, Akademicheskii prosp., Tomsk, 634055
A. V. Byakov
Russian Federation
Anton V. Byakov.
2/4, Akademicheskii prosp., Tomsk, 634055
I. S. Shil’ko
Belarus
Ivan S. Shil’ko.
32a, ul. Kirova, Gomel, 246050
References
1. Hugaas Е., Echtermeyer А. Т. Filament wound composite fatigue mechanisms investigated with full field DIC strain monitoring / Open Eng. 2021. Vol. 11. N 1. P. 401 - 413. DOI: 10.1515/eng-2021-0041
2. Qiao Y., Salviato M. Micro-computed tomography analysis of damage in notched composite laminates under multi-axial fatigue /Compos. Part В Eng. 2020. Vol. 187. P. 107789. DOI: 10.1016/j.compositesb.2020.107789
3. Battams G. P., Dulieu-Barton J. M. Data-rich characterisation of damage propagation in composite materials / Compos. Part A Appl. Sci. Manuf. 2016. Vol. 91. P. 420 - 435. DOI: 10.1016/j.compositesa.2016.08.007
4. Boufaida Z., Farge L„ Andre S., et al. Influence of the fiber/ matrix strength on the mechanical properties of a glass fiber/ thermoplastic-matrix plain weave fabric composite / Compos. Part A Appl. Sci. Manuf. 2015. Vol. 75. P. 28 - 38. DOI: 10.1016/j.compositesa.2015.04.012
5. Kalteremidou K. A., Aggelis D. G., Hemelrijck D. Van, et al. On the use of acoustic emission to identify the dominant stress/strain component in carbon/epoxy composite materials / Meeh. Res. Commun. 2021. Vol. 111. P. 103663. DOI: 10.1016/j.mechrescom.2021.103663
6. Broughton W. R., Gower М. R. L., Lodeiro М. J., et al. An experimental assessment of open-hole tension-tension fatigue behaviour of a GFRP laminate / Compos. Part A Appl. Sci. Manuf. 2011. Vol. 42. N 10. P. 1310 - 1320. DOI: 10.1016/j.compositesa.2011.05.014
7. Pannier Y., Foti E, Gigliotti M. High temperature fatigue of carbon/polyimide 8-harness satin woven composites. Part I: Digital Image Correlation and Micro-Computed Tomography damage characterization / Compos. Struct. 2020. Vol. 244. P. 112255. DOI: 10.1016/j.compstruct.2020.112255
8. Izzaty R. E., Astuti B., Cholimah N. Fatigue of Structures and Materials I Angewandte Chemie International Edition, 6(11); 951 - 952 / Ed. Schijve J. Dordrecht. — Netherlands: Springer, 2009. P. 5 - 24.
9. Bokhoeva L. A., Baldanov A. B., Rogov V. E., Chermo-shentseva A. S., Ameen T. The effect of the addition of nanopowders on the strength of multilayer composite materials / Zavod. Lab. Diagn. Mater. 2021. Vol. 87. N 8. P. 42 - 50. DOI: 10.26896/1028-6861-2021-87-8-42-50
10. Khlybov A. A., Kabaldin Yu. G., Ryabov D. A., Anosov M. S., Shatagin D. A. Study of the damage to 12Crl8NilOTi steel samples under low cycle fatigue using methods of nondestructive control / Zavod. Lab. Diagn. Mater. 2021. Vol. 87. N 5. P. 61 - 67. DOI: 10.26896/1028-6861-2021-87-5-61-67
11. Shrestha R., Simsiriwong J., Shamsaei N. Mean strain effects on cyclic deformation and fatigue behavior of polyether ether ketone (PEEK) / Polym. Test. 2016. Vol. 55. P. 69 - 77. DOI: 10.1016/j.polymertesting.2016.08.002
12. Berer M., Major Z., Pinter G., et al. Investigation of the dynamic mechanical behavior of polyetheretherketone (PEEK) in the high stress tensile regime / Meeh. Time-Dependent Mater. 2014. Vol. 18. N 4. P. 663 - 684. DOI: 10.1007/S11043-013-9211-7
13. Baxter T. The development and application of the load-stroke hysteresis technique for evaluating fatigue damage development in composite materials. — Virginia Polytechnic Institute and State University, 1994. — 156 p.
14. Ruggles-Wrenn M. B., Noomen M. Fatigue of unitized poly-mer/ceramic matrix composites with 2D and 3D fiber architecture at elevated temperature I Polym. Test. 2018. Vol. 72. P. 244-256. DOI: 10.1016/j.polymertesting.2018.10.024
15. Abbasnezhad N., Khavandi A., Fitoussi J., et al. Influence of loading conditions on the overall mechanical behavior of polyether-ether-ketone (PEEK) / Int. J. Fatigue. 2018. Vol. 109. P. 83 - 92. DOI: 10.1016/j.ijfatigue.2017.12.010
16. McKeen L. W. Fatigue and Tribological Properties of Plastics and Elastomers, 2nd Edition. 2010. ISBN 9780080964508
17. Takahara A., Magoine T., Kajiyama T. Effect of glass fibermatrix polymer interaction on fatigue characteristics of short glass fiber-reinforced poly(butylene terephthalate) based on dynamic viscoelastic measurement during the fatigue process / J. Polym. Sci. Part В Polym. Phys. 1994. Vol. 32. N 5. P. 839 -849. DOI: 10.1002/polb.1994.090320507
18. Movahedi-Rad A. V., Keller T., Vassilopoulos A. P. Modeling of fatigue behavior based on interaction between time- and cyclic-dependent mechanical properties / Compos. Part A Appl. Sci. Manuf. 2019. Vol. 124. P. 105469. DOI: 10.1016/j.compositesa.2019.05.037
19. Benaarbia A., Chrysochoos A., Robert G. Kinetics of stored and dissipated energies associated with cyclic loadings of dry polyamide 6.6 specimens / Polym. Test. 2014. Vol. 34. P. 155-167. DOI: 10.1016/j.polymertesting.2014.01.009
20. Tao G., Xia Z. A non-contact real-time strain measurement and control system for multiaxial cyclic/fatigue tests of polymer materials by digital image correlation method / Polym. Test. 2005. Vol. 24. N 7. P. 844 - 855. DOI: 10.1016/j.polymertesting.2005.06.013
21. Chen С. C., Chheda N., Sauer J. A. Craze and Fatigue Resistance of Glassy Polymers / J. Macromol. Sci. Part B. 1981. Vol. 19. N 3. P. 565 - 588. DOI: 10.1080/00222348108015318
22. Pichon P. G., Boutaous M., Me’chin E., et al. Simulation and Measurement of the Self Heating and Thermal Stability of Polymers Under Fatigue Sollicitations. Vol. 7. Fluid Flow, Heat Transfer and Thermal Systems, Parts A and B. ASMEDC, 2010. P. 653 - 661.
23. Huang X. Fabrication and properties of carbon fibers / Materials (Basel). 2009. Vol. 2. N 4. P. 2369 - 2403. DOI: 10.3390/ma2042369
24. Karacan I., Erzurumluoglu L. The effect of carbonization temperature on the structure and properties of carbon fibers prepared from poly (m-phenylene isophthalamide) precursor / Fibers Polym. 2015. Vol. 16. N 8. P. 1629 - 1645. DOI: 10.1007/S12221-015-5030-6
25. Zhang X., Lu Y., Xiao H., et al. Effect of hot stretching graphitization on the structure and mechanical properties of rayon-based carbon fibers / J. Mater. Sci. 2014. Vol. 49. N 2. P. 673 - 684. DOI: 10.1007/s10853-013-7748-0
26. Shelestova V. A., Letova L. N., Kostelcev V. V., et al. Effect of the type of a carbon-fiber filler on the properties of fluororubber compositions / Polym. Mater. Technol. 2019. Vol. 5. N 2. P. 76 - 81. DOI: 10.32864/polymmattech-2019-5-2-76-81
Review
For citations:
Panin S.V., Bogdanov A.A., Lyubutin P.S., Eremin A.V., Buslovich D.G., Byakov A.V., Shil’ko I.S. Optical strain measurement technique for estimating degradation of the properties of carbon fiber reinforced polymer composites under cyclic loading. Industrial laboratory. Diagnostics of materials. 2023;89(1):46-55. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-1-46-55