The choice of methods for lithium and boron determination in lithium-boron alloys
https://doi.org/10.26896/1028-6861-2023-89-1-20-27
Abstract
A lithium-boron alloy (LBA) with a high lithium content (up to 70%) is used as an anode material for molten salt batteries in chemical sources of current. We present a complex of developed techniques for determining mass fractions of free lithium, total lithium, and total boron in lithium-boron alloys containing lithium mass fractions no more than 70%, boron mass fractions — no less than 26%. Optimal conditions for preparation of LBA samples and subsequent free lithium extraction from them are determined. The developed techniques are intended for i) extraction-titrimetric determination of free lithium in a content range of 20 - 50% (the relative total error no more than 1.1%); ii) determination of the total lithium content using flame atomic emission spectrometry in a content range of 59.0 - 96.0% (the relative overall error no more than 2.7%; iii) determination of the total boron content by two methods, i.e., potentiometric titration within a content range of 5 - 40% (the relative total error no more than 1.3%) and flame atomic absorption spectrometry within a content range of 4.9-50.7% (the relative total error no more than 4.9%). The results of analysis of full-scale LBA samples for the content of free lithium, total lithium and total boron are presented. It is shown that the application of two techniques for the determination of total boron content in lithium-boron alloys makes it possible to get the convergent results within the limits of measurement errors. The developed techniques are certified by the metrological service of the enterprise and can be used for the incoming and process control of the LBA production.
About the Authors
A. A. KalininaRussian Federation
Anna A. Kalinina.
37, Mira prosp., Sarov, Nizhni Novgorod obl., 607190
I. A. Konopkina
Russian Federation
Irina A. Konopkina.
37, Mira prosp., Sarov, Nizhni Novgorod obl., 607190
O. V. Vakhnina
Russian Federation
Ol’ga V. Vakhnina.
37, Mira prosp., Sarov, Nizhni Novgorod obl., 607190
I V. Koroleva
Russian Federation
Irina V. Koroleva.
37, Mira prosp., Sarov, Nizhni Novgorod obl., 607190
K B. Zhogova
Russian Federation
Kira B. Zhogova.
37, Mira prosp., Sarov, Nizhni Novgorod obl., 607190
S. A. Annikova
Russian Federation
Svetlana A. Annikova.
37, Mira prosp., Sarov, Nizhni Novgorod obl., 607190
References
1. Povarov Yu. М. On the use of lithium in chemical sources of electrical energy / Proc, of 5th All-Union Conference on Chemistry and Technology of Rear Alkaline Elements. — Moscow: Khimiya, 1977. P. 107 [in Russian].
2. Morachevsky A. G. Application of lithium and its alloys in high-temperature electrical supplies / Proc, of 5th All-Union Conference on Chemistry and Technology of Rear Alkaline Elements. — Moscow: Khimiya, 1977. P. 108 [in Russian].
3. Wang F. A., Mitchell M. A., Sutura I., et al. Crystal structure study a new compound Li5B4 / J. Less-Common Met. 1978. Vol. 61. N 2. P. 237 - 251. DOI: 10.1016/0022-5088(78)90219-9
4. Ahsanova O. L., Zagitov R. M., Gafiyatullina L. Ya. Determination of boron in silica-alumina catalyst of emissive spectral analysis method / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 9. P. 26 - 29 [in Russian].
5. Elwell W. T., Wood D. F. Analysis of the New Metals: Titanium, Zirconium, Hafnium, Tantalum, Tungsten and Their Alloys. — Elsevier Science & Technology, 1966. — 275 p.
6. Porter G., Shubert R. K. Boron. Calorimetric methods of nonmetals determination. — Moscow: Izd. inostr. lit., 1963. — 217 p. [in Russian].
7. Zolotov Yu. A., Kuzmin N. M. Extraction concentrating. — Moscow: Khimiya, 1971. — 286 p. [in Russian].
8. Klitina V I. Atomic-absorption analysis of commercial and raw materials. — Moscow: F.É. Dzerzhinskii MDNTP, 1976. — 22 p. [in Russian].
9. Zolotareva N. I., Grazhulene S. S. Using chemically active additives for the arc atomic emission determination of boron in graphite / J. Anal. Chem. 2021. Vol. 76. N . P. 185 - 190. DOI: 10.1134/S1061934820120163
10. Sasi Bhushan K., Preeti G. Goswami, Vekatesh K., et al. Fusion method for sample preparation for isotopic composition determination of boron in refractory materials by thermal ionization mass spectrometry with validation using dissolved and purified samples / Int. J. Mass Spectrom. 2021. Vol. 467. 116624. DOI: 10.1016/j.ijms.2021.116624
11. Kilroy W. P., Angres I. The extraction and determination of free lithium in Li-B alloys / J. Less-Common Met. 1979. Vol. 63. N 1. P. 123-128. DOI: 10.1016/0022-5088(79)90215-7
12. Poluekhtov N. S. Analytical chemistry of lithium. — Moscow: Nauka, 1975. — 203 p. [in Russian].
13. Nemodruk A. A., Karalova Z. K. Analytical chemistry of boron. — Moscow: Nauka, 1964. — 282 p. [in Russian].
14. Gurskii V S., Kharitonova Ye. Yu. Flow injection determination of boric acid with conductometric detection / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 12. P 20 - 24 [in Russian].
15. Pupyshev A. A. Atomic absorption spectral analysis. — Moscow: Technosfera, 2009. — 784 p. [in Russian].
16. Chavezov I., Tsalev D. Atomic absorption analysis. — Leningrad: Khimiya, 1983. — 144 p. [Russian translation].
17. RMG 61-2010. GSI. Indicators of accuracy, correctness, precision of quantitative chemical analysis techniques. Methods of evaluation. — Moscow: Standartinform, 2012. — 58 p. [in Russian].
Review
For citations:
Kalinina A.A., Konopkina I.A., Vakhnina O.V., Koroleva I.V., Zhogova K.B., Annikova S.A. The choice of methods for lithium and boron determination in lithium-boron alloys. Industrial laboratory. Diagnostics of materials. 2023;89(1):20-27. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-1-20-27