Study of viscoelastic transition in heat-resistant polycrystalline alloy VZhl71 of the Ni - Co - Cr system
https://doi.org/10.26896/1028-6861-2023-89-2-I-31-38
Abstract
Heat-resistant materials used, for example, in aircraft parts, are exposed to high temperatures and are heated under the impact of variable external forces. At a certain point in time, the material that first experienced a small deformation ceases to be simply elastic and graduates into a viscoelastic state. Microyield thus developed in the material, subsequently leads to the creep. We present the results of studying the microyield in a heat-resistant polycrystalline alloy VZhl71 of the Ni - Co - Cr system. A high-temperature background of the internal friction was studied by mechanical spectroscopy. It is shown that the transition of the alloy from an elastic to a viscoelastic state proceeds in two stages and is accompanied by microyield resulted from the dislocation movement. The first and second activation energies of the high-temperatureinternal friction background are determined for the state of the material under consideration. An expression for calculating the transition temperature is derived. The results obtained can be used in the study of the states of heat-resistant, high-temperature and structured materials, as well as amorphous metals and alloys.
About the Authors
D. O. FrolovRussian Federation
Denis O. Frolov
92, prosp. Lenina, Tula, 300012
D. M. Levin
Russian Federation
Daniil M. Levin
92, prosp. Lenina, Tula, 300012
S. S. Manokhin
Russian Federation
Sergey S. Manokhin
1, prosp. Akademika Semenova, Chernogolovka, Moscow obi, 142432
Yu. R. Kolobov
Russian Federation
Yuri R. Kolobov
1, prosp. Akademika Semenova, Chernogolovka, Moscow obi, 142432
References
1. Fang D., Li W., Cheng Т., et al. Review on mechanics of ultra-high-temperature materials / Acta Mech. Sin. 2021. N 37(9). P 1347 - 1370. DOI: 10.1007/sl0409-021-01146-3
2. Landau L. D., Lifshitz E. M. Theory of Elasticity. — Oxford: Pergamon press, 1970. — 165 p.
3. Marchenko V I., Misbah Ch. Model of plasticity of amorphous materials / Phys. Rev. E. 2011. Vol. 84. Issue 2. E 021502(1 - 7). DOI: 10.1103/PhysRevE.84.021502
4. Reed R. C. The Superalloys. Fundamentals and Applications. — Cambridge: University Press, 2006. — 372 p.
5. Golovin S., Pushkar A., Levin D. Elastic and damping properties of structural metal materials. — Moscow: Metallurgiya, 1987. — 190 p. [in Russian].
6. Zhou Y., Chen X., Qin S. A strain-compensated constitutive model for describing the hot compressive deformation behaviors of an aged Inconel 718 superalloy / High Temp. Mater. Proc. 2019. Vol. 38. E 436 - 443. DOI: 10.1515/htmp-2018-0108
7. Kolobov Yu. R. Diffusion-controlled processes at grain boundaries and plasticity of metallic polycrystals. — Novosibirsk: Nauka, 1998. — 184 p. [in Russian].
8. Novick A. S., Berry B. S. Anelastic Relaxation in Crystalline Solids. — New York: Acad. Press, 1972. — 472 p.
9. Postnikov V S., Baushis Ya. P. Mechanisms of relaxation phenomena in solids. — Kaunas: Kaunas Polytechnic Institute, 1974. — 364 p. [in Russian].
10. Shapoval B. I., Arzhavitin V M. Mechanisms of high-temperature background of internal friction of metals. — Moscow: Atomlnform, 1988. — 49 p. [in Russian].
11. Castillo M., No M., Jimenez J., et al. High temperature internal friction in a Ti-46Al-lMo-0.2Si intermetallic, comparison with creep behavior / Acta Materialia. 2016. Vol. 103. P 46 - 56. DOI: 10.1016/j.actamat.2015.09.052
12. Usategui L., Klein Т., No M., et al. High-temperature phenomena in an advanced intermetallic nano-lamellar y-TiAlbased alloy. Part I: Internal friction and atomic relaxation processes / Acta Materialia. 2020. Vol. 200. P 442 – 454. DOI: 10.1016/j.actamat.2020.09.025
13. Bozhko S. A., Kolobov Yu. R., Manokhin S. S., et al. Investigation of the Influence of Thermomechanical Treatment on the Structural-Phase State and Mechanical Properties of a VZhl71 Alloy / Russ. Phys. J. 2020. Vol. 62. P 2306 - 2313. DOI: 10.1007/slll82-020-01981-0
14. Levin D. M., Frolov D. O., Manokhin S. S. Activation characteristics of viscoelastic properties of a heat-resistant alloy based on a Ni - Co - Cr system strengthened by volumetric nitriding / Izv. Vuzov. Fiz. 2022. Vol. 65. N 7. P 85 - 94 [in Russian]. DOI: 10.17223/00213411/65/7/85
15. Weller M., Hirscher M., Schweizer E., Kronmiiller H. High temperature internal friction in NiAl single crystals / J. Phys. IV Proc. EDP Sci. 1996. Vol. 06 (C8). P 231 - 234. DOI: 10.1051/jp4:1996849
16. Blanter M., Golovin I., Neuhauser H., Sinning H.-R. Internal Friction in Metallic Materials. — New York: Springer, 2007. — 539 p.
17. Schoeck G., Bisogni E., Shyne J. The activation energy of high temperature internal friction / Acta Metallurgica. 1964. Vol. 12. Issue 12. P 1466 – 1468. DOI: 10.1016/0001-6160(64)90141-5
18. Postnikov V S. Internal friction in metals. — Moscow: Metal lurgiya, 1974. — 352 p. [in Russian].
19. Lurie A. I. Theory of elasticity. — Moscow: Nauka, 1970. — 940 p. [in Russian].
20. Kharitonov A. V On the theory of amplitude-dependent internal friction of crystalline media / Akust. Zh. 1965. Vol. XI. Issue 2. P 226 - 232 [in Russian].
21. Golovin I. S., Zadorozhnyy V. Yu., Andrianova T. S., Estrin Yu. Z. Relaxation and Hysteresis Internal Friction in Ultra Fine Grained Copper at Temperatures of up to 400 °C / Bull. RAS. Physics. 2011. Vol. 75. N 10. P 1290 - 1299.
22. Blunter M. S., Golovin I. S., Golovin S. A., Ilyin A. A. Mechanical spectroscopy of metallic materials. — Moscow: MIA, 1994. — 256 p. [in Russian].
23. Kosevich A. M. Dislocations in the theory of elasticity. — Kiev: Naukova dumka, 1978. — 220 p. [in Russian].
24. Gorbatenko V V, Danilov V I., Zuev L. B. Instability of plastic flow: Chernov - Luders bands and the Portevin - Le Chatelier effect / JTE 2017. Vol. 87. Issue 3. P 372 - 377 [in Russian]. DOI: 10.21883/JTE2017.03.44241.1818
25. David E., Jackson I. High-temperature internal friction and dynamic moduli in copper / Mater. Sci. Eng. 2018. A730. P 425 -437. DOI: 10.1016/j.msea.2018.05.093
26. Gridnev S. A., Kalinin Yu. E. On the vacancy nature of the high-temperature background of internal friction in solids / Techn. Phys. 2022. Vol. 92. N 2. P 196 - 202. DOI: 10.21883/TP2022.02.52947.146-21
27. Matyunin V M., Kudryakov O. V, Varavka V. N., Marchenkov A. Yu. Micromechanics of small deformations in metal alloys under laser irradiation / Zavod. Lab. Diagn. Mater. 2022. Vol. 88. N 10. P 66 - 72 [in Russian].
28. Magomedov M. N. On the criteria of the crystal — liquid phase transition / Zh. Teor. Fiz. 2008. Vol. 78. Issue 8. P 93 -100 [in Russian].
29. Kulkov V G., Syshchikov A. A. Contribution of Porous Grain Boundaries to the High-Temperature Background of Internal Friction / Russ. Metallurgy. 2020. P 277 - 281. DOI: 10.1134/S0036029520040175
30. Belomyttsev M. Yu. Investigation of the scale resistance of a heat-resistant nickel alloy with the structure of the y'-phase / Izv. Vuzov. Cher. Met. 2021. Vol. 64. N 1. P 52 - 58 [in Russian]. DOI: 10.17073/0368-0797-2021-1-52-58
31. Kablov D. E., Sidorov V V., Puchkov Yu. A. Features of the diffusion behavior of impurities and refining additives in nickel and single-crystal heat-resistant alloys / Aviats. Mater. Tekhnol. 2016. N 1(40). P 24 - 31 [in Russian].
32. Tarasov D. P. High-temperature background of internal friction in nanocomposites / Zh. Teor. Fiz. 2013. Vol. 83. Issue 2. P 65 - 69 [in Russian].
33. Dvoretskov R. M., Slavin A. V, Tikhonov M. M., Kuko I. S. Control of the chemical composition of heat-resistant nickel alloys upon manufacturing products from these alloys using additive technologies / Zavod. Lab. Diagn. Mater. 2021. Vol. 87. N 4. P 71 - 80 [in Russian].
Review
For citations:
Frolov D.O., Levin D.M., Manokhin S.S., Kolobov Yu.R. Study of viscoelastic transition in heat-resistant polycrystalline alloy VZhl71 of the Ni - Co - Cr system. Industrial laboratory. Diagnostics of materials. 2023;89(2(I)):31-38. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-2-I-31-38