Effect of oxidation on mechanical properties and surface condition of heat-resistance titanium alloy VT41
https://doi.org/10.26896/1028-6861-2023-89-2-I-63-75
Abstract
The present article dedicated to influence of oxygen affected zone of VT41 heat-resistant titanium alloy's samples. The samples were made of 023 mm rods and 1 mm thick sheets and processed by short term heat treatment at 300 - 900°C in atmosphere furnace. Mechanical properties of samples were measured at room temperature by straining (rods) and bending (sheets) Surface of fractured samples were studied by means of ТЕМ. The results of the present work gave an opportunity to match the temper colors of the samples with the temperature of heat-treatment, mechanical properties and the depth of fragile oxygen affected zone. The dependencies of relative strain and reduction area versus heat-treatment temperatures were determined. It was defined that a critical changing of plasticity's characteristics appears at heattreatment temperature above 500°C. The appearance of bright temper colors leads to enlarging of dispersion of ultimate stress and critical bending angle. When temperature of annealing goes up to 800°C the bending angle of sheet-samples decrease significantly at room temperature. As accurate measuring of the depth of oxygen affected zone and thickness of Ti02 layer by means of optical metallography and fractography at low temperatures is seriously complicated than one could qualify a depth of oxygen affected zone on the spot by determining an annealing colors. The appearance of bright yellow annealing colors with metal shining didn't bring any critical changes of mechanical properties.
About the Authors
O. S. KashapovRussian Federation
Oleg S. Kashapov
17, Radio ul., Moscow, 105005
L. E. Reshetilo
Russian Federation
Liliya E. Reshetilo
17, Radio ul., Moscow, 105005
S. A. Naprienko
Russian Federation
Sergey A. Naprienko
17, Radio ul., Moscow, 105005
P. N. Medvedev
Russian Federation
Pavel N. Medvedev
17, Radio ul., Moscow, 105005
References
1. Gorynin I. V, Chechyulin В. В. Titanium in mechanical engineering. — Moscow: Mashinostroenie, 1990. — 400 p. [in Russian].
2. Solonina O. P., Glazunov S. G. Modern heat-resistant titanium alloys and prospects for their application in engines. — Moscow: Metallurgiya, 1974. — 448 p. [in Russian].
3. Geary В., Bolam V J., Jenkins S. L., Davies D. P. High temperature titanium sheet for helicopter exhaust applications. Titanium'95: Science and technology. — UK: The institute of materials, 1996. E 1638 - 1645. ISBN 1-86125-005-3
4. Sai Srinadh K. V, Singh V Oxidation behavior of the near u-titanium alloy IMI 834 / Bull. Mater. Sci. 2004. Vol. 27. N 4. E 347 - 354. DOI: 10.1007/BF02704771
5. Nochovnaya N. A., Yakovlev A. L., Alekseyev E. B. The Effect of Gadolinium on Heat-Resistance of VT38 Alloy / Tekhnol. Legk. Splavov. 2012. N 1. E 39 - 46 [in Russian].
6. Grebenyuk O. N., Zenina M. V. Oxidation of an intermetallic TiNbAl-Based Alloy at Temperatures up to 800°C / Tekhnol. Legk. Splavov. 2010. N 4. E 36 - 40 [in Russian].
7. Aleksandrov D. A., Muboyadzhyan S. A., Gayamov A. M., Gorlov D. S. Investigation of heat resistance and kinetics of changes in the elementary composition of the composition of titanium alloys VT41 with heat-resistant coatings / Aviacionnye materialy i tehnologii. 2014. N S5. E 61 - 66 [in Russian]. DOI:10.18577/2071-9140-2014-0-s5-61-66
8. Grebenyuk O. N., Salenkov V S. Investigation of Titanium intermetallics Oxidation at Operating Temperatures / Tekhnol. Legk. Splavov. 2010. N 2. E 29 - 33 [in Russian].
9. Mamonov A. M., Agarkova E. O., Gvozdeva O. N., Slezov S. S. Features of formation of structural-phase state and residual stresses in welded joints of VT20 titanium alloy, made by electron-beam welding / Deform. Razrush. Mater. 2021. N 2. E 32 - 36 [in Russian]. DOI: 10.31044/1814-4632-2021-2-32-36
10. Bulkov А. В., Peshkov V V, Selivanov V E, Mikhalevich N. E. Kinetics of growth of gas-saturated (embroken) layers on titanium at vacuum annealing / Vestn. Voronezh. Gos. Tekhn. Univ. 2020. Vol. 16. N 2. E 142 - 149 [in Russian]. DOI: 10.25987/VSTU2020.16.2.019
11. Yang Y., Kitashima Т., Нага Т., et al. Effect of temperature on oxidation behaviour of Ga-containing near-a Ti alloy / Corrosion Science. 2018. Vol. 133. E 61 - 67. DOI: 10.1016/j.corsci.2018.01.018
12. Kumar S., Sankara Narayanan T. S. N., Raman S. G. S., Seshadri S. K. Thermal oxidation of Ti-6A1-4V alloy: Microstructural and electrochemical characterization / Materials Chemistry and Fhysics. 2010. Vol. 119. E 337 - 346. DOI: 10.1016/j.matchemphys.2009.09.007
13. Ouyang P., Mi G., Li P., et al. Non-Isothermal Oxidation Behavior and Mechanism of a High Temperature Near-a Titanium Alloy / Materials. 2018. N 11(2141). E 1 - 16. DOI: 10.3390/mallll2141
14. Gaddam R., Sefer В., Pederson R., Antti M-L. Study of alpha-case depth in Ti-6Al-2Sn-4Zr-2Mo and Ti-6A1-4V 7th EEIGM International Conference on Advanced Materials Research. IOP Conf. Series: Materials Science and Engineering. 2013. E 1 - 8. DOI: 10.1088/1757-899X/48/1/012002
15. Puzakov I. Yu., Kornilova M. A., Samuylov S. D. Gas Saturation of Weld Spots during Titanium Alloy Chips Briquetting via an Electric Pulse Technique / Tekhnol. Legk. Splavov. 2011. Nl. E 98-107 [in Russian].
16. Yong-Ling Wang, Xiao-Yun Song, Wen Ma, et al. Microstructure and tensile properties of Ti-62421S alloy plate with different annealing treatments. Rare metals (The Nonferrous Metals Society of China and Springer-Verlag, Berlin). 2014. E 1 - 6. Published online 29.08.2014. DOI: 10.1007Ы2598-014-0349-5
17. Ebach-Stahl A., Eilers C., Laska N., Braun R. Cyclic oxidation behaviour of the titanium alloys Ti-6242 and Ti-17 with Ti - Al - Cr - Y coatings at 600 and 700°C in air / Surface & Coatings Technology. 2013. N 223. E 24 - 31. DOI: 10.1016/j.surfcoat.2013.02.021
18. US Pat. 2015/0192031 Al, USA. Titanium alloy having oxidation resistance and high strength at elevated temperatures / Fusheng Sun, Ernest M. Crist, Kuang-0 Yu; RTI International Metals, Inc., Niles, OH (US); Filed: 15.03.2013; Pub. date: 09.07.2015.
19. Davies P., Pederson R., Coleman M., Birosca S. The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in air / Acta Materialia. 2016. Vol. 117. E 51 - 67. DOI: 10.1016/j.actamat.2016.07.015
20. Avkhimovich G. E, Bratashev V L., Guk N. V., et al. Strength and durability of VT20 alloy pipes in the presence of a gas-saturated layer / Aviation materials. Increasing the strength and reliability of structural materials. — Moscow: VIAM, 1984. E 254 - 260 [in Russian].
21. Dewidar M. Improvement of hardness and wear resistance of Ti-6A1-4V alloy by thermal oxidation / Journal of Engineering Sciences, Assiut University. 2006. Vol. 34. N 6. E 1941 - 1951.
22. Kovalev A. P., Belykh L. I. Kinetics and diffusion mechanism of formation of a gas-saturated layer during chemical-thermal treatment of titanium alloys / Izv. Vuzov. Mashinostr. 2006. N 2. E51-6 0 [in Russian].
23. Guleryuz H., Cimenoglu H. Surface modification of a Ti-6A1-4V alloy by thermal oxidation / Surface & Coatings Technology. 2005. N 192. E 164 - 170. DOI:10.1016/j.surfcoat.2004.05.018
24. Kel'tsiyeva I. A., Vasil'yev S. G., Simonov V N. Features of the structure of the titanium alloy VT6 surface layer after deforming cutting and subsequent thermochemical treatment / Inzh. Zh. Nauka Innov. 2018. N 2. E 1 - 9 [in Russian]. DOI: 10.18698/2308-6033-2018-2-1733
25. Zhecheva A., Sha W, Malinov S., Long A. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods / Surface & Coatings Technology. 2005. N. 200. E 2192 - 2207. DOI: 10.1016/j.surfcoat.2004.07.115
26. Agzamov R. D., Tagirov A. E, Nikolayev A. A. Study of in fluence of low-temperature Ion nitriding on the structure and properties of titanium alloy VT6 / Vestn. UGATU 2017. Vol. 21. N 4 (78). E 11 - 17 [in Russian].
27. Christiansen T. L., Jellesen M. S., Somers M. A. J. Future trends in gaseous surface hardening of titanium and titanium alloys / La Metallurgia Italiana. 2018. N 9. E 13 - 22.
28. Bulkov А. В., Peshkov V V, Korchagin I. В., Boldyrev D. A. Restoration of plasticity of surface gas-saturated layers of titanium under conditions of non-oxidized annealing / Vestn. Voronezh. Gos. Tekhn. Univ. 2020. Vol. 16. N 2. E 154 -159 [in Russian]. DOI: 10.25987/VSTU2020.16.2.021
29. Peshkov V V, Kolomenskiy А. В., Peshkov A. V, et al. Increasing the cyclic durability of nitride titanium / Vestn. Voronezh. Gos. Tekhn. Univ. 2016. Vol. 12. N 6. E 110 - 115 [in Russian].
30. Davydenko L. V., Yegorova Yu. В., Mamonov I. M., Chibisova Ye. V. Statistical comparison of mechanical properties of titanium alloys of different classes / Materials of the 77th Int. Sci.-Tech. conf. AAI "Automobile and tractor construction in Russia: development priorities and personnel training". — Moscow: Izvestiya Moskovskogo gosudarstvennogo tekhnicheskogo universiteta MAMI. 2013. E 53 - 60 [in Russian].
31. Hertl C, Werner E., Thull R., Gbureck U. Oxygen diffusion hardening of cp-titanium for biomedical applications. — IOF Fublishing Ltd. Biomed. Master, 2010. N 5. E 1 - 8. DOI: 10.1088/1748-6041/5/5/054104
32. Benara Zh. Oxidation of metals. Vol. II. — Moscow: Metallurgiya, 1969. — 444 p. [Russian translation].
33. Benara Zh. Oxidation of metals. Theoretical bases. Vol. I. — Moscow: Metallurgiya, 1967. — 499 p. [Russian translation].
34. Vachea N., Cadoretb Y, Dodb В., Monceaua D. Modeling the oxidation kinetics of titanium alloys: Review, Method and Application to Ti-64 and Ti-6242s alloys / Corrosion Science. 2021. Vol. 178. DOI: 10/1016/j.corsci.2020.109041
35. Kalienko M. S., Volkov A. V, Zhelnina A. V Study of the gas-saturated layer in titanium alloys after isothermal annealing / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 3. E 32 - 35 [in Russian]. DOI: 10.26896/1028-6861-2018-84-3-32-35
36. Zhestkov В. E., Shtamov V V Investigation of the state of materials in a hypersonic plasma flow / Zavod. Lab. Diagn. Mater. 2016. Vol. 82. N 12. E 58 - 65 [in Russian].
37. Goritskiy V. M., Silina N. G., Shneyderov G. R. Characteristics of the resistance to brittle fracture of the elements of light steel thin-walled structures determined on samples with a sharp notch groove / Zavod. Lab. Diagn. Mater. 2020. Vol. 86. N 3. E 55-60. DOI: 10.26896/1028-6861-2020-86-3-55-60
38. Maksimov А. В., Shevchenko I. P., Erokhina I. S. Determination of the metal toughness components in impact-bending test / Zavod. Lab. Diagn. Mater. 2018. Vol. 84. N 12. E 68 - 72 [in Russian]. DOI: 10.26896/1028-6861-2018-84-12-68-72
Review
For citations:
Kashapov O.S., Reshetilo L.E., Naprienko S.A., Medvedev P.N. Effect of oxidation on mechanical properties and surface condition of heat-resistance titanium alloy VT41. Industrial laboratory. Diagnostics of materials. 2023;89(2(I)):63-75. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-2-I-63-75