Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Modified planar sensors for cefepime determination

https://doi.org/10.26896/1028-6861-2023-89-3-5-13

Abstract

Planar screen-printed potentiometric sensors sensitive to cefepime, cephalosporine antibiotic of the fourth generation, has been developed. Cefepime is an amphoteric antibiotic with carboxyl and aminothiazole groups which exists as a cation in a strongly acidic media, a zwitter-ion in a weakly acidic and neutral media, and as an anion in an alkaline media. The interval of pH = 1.5 - 2.0 is set for obtaining cationic electrode functions for the cefepime determination. Cefepime-tetraphenylborate associates are used as electrode-active components (EAC). The optimal EAC content for planar sensors is 2-3%. The electrode functions are linear in the range of 1 x 10-5 - 1 x 10-2 M, angular coefficients 50 ± 2 mV/pC, response time 20 sec for unmodified cefepime sensors. The role of the modifier, ZnO nanoparticles, in improving the electroanalytic properties of sensors is shown. The introduction of a binary mixture of zinc oxide and cetylpyridinium chloride into carbon-containing ink leads to a decrease in the detection limit of cefepime (1 x КГ6 M), an increase in the angular coefficient (58 ± 1 mV/pC) and the interval of linearity of electrode functions (1 x 10-6 - 1 x 10-2 mole/liter), sensor response time being 17 sec. The use of a surfactant as an electrode surface comodifier leads to stabilization of the nanoparticle dispersion. The use of modified screen-printed sensors for the cefepime determination in medicinal and biological media, in particular, in saliva, is shown.

About the Authors

E. G. Kulapina
N. G. Chernyshevsky Saratov National Research State University
Russian Federation

Elena G. Kulapina

410012, Saratov, ul. Astrakhanskya, 83



R. K. Mursalov
N. G. Chernyshevsky Saratov National Research State University
Russian Federation

Ruslan K. Mursalov

410012, Saratov, ul. Astrakhanskya, 83



O. I. Kulapina
У. I. Razumovsky Saratov State Medical University
Russian Federation

Olga I. Kulapina

410012, Saratov, ul. Bolshaya Kazach'ya, 112



V. D. Ankina
У. I. Razumovsky Saratov State Medical University
Russian Federation

Vlada D. Ankina

410012, Saratov, ul. Bolshaya Kazach'ya, 112



E. N. Cherdakova
N. G. Chernyshevsky Saratov National Research State University
Russian Federation

Elena N. Cherdakova

410012, Saratov, ul. Astrakhanskya, 83



References

1. Chauhan N., Balayan S., Gupta S., et al. Enzyme-based sensing on nanohybrid film coated over FTO electrode for highly sensitive detection of antibiotics / Bioprocess Biosyst. Eng. 2021. Vol. 44. N 12. E 2469 - 2479. DOI:10.1007/s00449-021-02618-3

2. Shahrokhian S., Hosseini-Nassaba N., Ghalkhaniac M. Construction of Ft nanoparticle-decorated graphene nanosheets and carbon nanospheres nanocomposite-modified electrodes: application to ultrasensitive electrochemical determination of cefepime / RSC Adv. 2014. Vol. 4. N 15. E 7786 - 7794. DOI:10.1039/c3ra44309d

3. Erkmen C, Palabiyik В. В., Uslu B. Sensitive electrochemical determination of Cefpirome in human urine using differential pulse voltammetry / CSJ. 2021. Vol. 42. N 3. E 593 - 601. DOI:10.17776/csj.900483

4. Kulapina E. G., Kulapina O. I., Karenko V A. Fotentiometric sensors for determination of cefepime in water and biological environments / Izv. Saratov. Univ. Nov. Sen Sen Khim. Biol. Ekol. 2016. Vol. 16. N 2. E 138 - 143 [in Russian]. DOI:10.18500/1816-9775-2016-16-2-138-143

5. Papanna R. K., Krishnegowda J. В., Nagaraja P. Spectrophotometric method for the determination of cefepime, cefazolin sodium and cefalothin sodium in pure and pharmaceutical dosage forms by using ninhydrin / Int. J. Pharm. Pharm. Sci. 2015. Vol. 7. N 5. E 194 - 199.

6. Hashim H. J., Abood N. K., Nief O. A. Spectroscopic estimation of cefepime by using batch, cloud point extraction and flow injection analysis methods / Egypt. J. Chem. 2021. Vol. 64. N 12. E 6971 - 6800. DOI:10.21608/ejchem.2021.62847.3440

7. Farid N. E, Abdelwahab N. S. New ecological method for determination of different fl-lactams: application to real human plasma samples / RSC Adv. 2019. Vol. 9. N 34. E 19539 - 19548. DOI:10.1039/C9RA02671A

8. Abdel-Aziz H., Tolba M. M., El-Enany N., et al. Green and sensitive spectrofluorimetric method for the determination of two cephalosporins in dosage forms / R. Soc. Open Sci. 2021. Vol. 8. N 8. E 210329 - 210342. DOI:10.1098/rsos.210329

9. Huang Y., Zhang Y., Yan Z., Liao S. Assay of ceftazidime and cefepime based on fluorescence quenching of carbon quantum dots / Lumenescence. 2015. Vol. 30. N 7. E 1133 - 1139. DOI:10.1002/bio.2871

10. Derayea S. M., Hytham M. A., Abdelmageed О. H., Haredy A. M. New valid spectrofluorimetric method for determination of selected cephalosporins in different pharmaceutical formulations using safranin as fluorophore / Spectrochim. Acta, Part A. 2016. Vol. 153. E 655 - 660. DOI:10.1016/j.saa.2015.10.001

11. El-Hamd M. A., Alia R., Haredy A. M., et al. Application of Hantzsch reaction as a new method for spectrofluorimetric determination of some cephalosporins / J. Appl. Pharm. Sci. 2017. Vol. 7. N 2. E 147 - 155. DOI:10.7324/JAPS.2017.70220

12. Legrand Т., Vodovar D., Tournier N., et al. Simultaneous Determination of Eight fl-Lactam Antibiotics, Amoxicillin, Cefazolin, Cefepime, Cefotaxime, Ceftazidime, Cloxacillin, Oxacillin, and Piperacillin, in Human Plasma by Using Ultra-HighPerformance Liquid Chromatography with Ultraviolet Detection / Antimicrob. Agents Chemother. 2016. Vol. 60. N 8. E 4734 - 4742. DOI:10.1128/AAC.00176-16

13. Rehm S., Rentsch K. HILIC LC-MS/MS method for the quantification of cefepime, imipenem and meropenem / J. Pharm. Biomed. Anal. 2020. Vol. 186. E 113289 - 113296. DOI:10.1016/j.jpba.2020.113289

14. Dabrowska M., Opoka W., Starek M. Determination of cefuroxime axetil and cefepime in biological materials by thin-layer chromatography — densitometry / J. Planar Chromatogr. 2017. Vol. 30. N 4. E 291 - 298. DOI:10.1556/1006.2017.30.4.9

15. Bjergum M. W., Barreto E. E, Scheetz M. H., et al. Stability and validation of a high-throughput LC-MS/MS method for the quantification of cefepime, meropenem, and piperacillin and tazobactam in Serum / J. Appl. Lab. Med. 2021. Vol. 6. N 5. E 1202 - 1212. DOI:10.1093/jalm/jfab036

16. Bellouard R., Deslandes G., Morival C, et al. Simultaneous determination of eight fl-lactam antibiotics in human plasma and cerebrospinal fluid by liquid chromatography coupled to tandem mass spectrometry / J. Pharm. Biomed. Anal. 2020. Vol. 178. E 112904 - 112912. DOI:10.1016/j.jpba.2019.112904

17. Moorthy G. S., Vedar C., Zane N. R., et al. Development and validation of a volumetric absorptive microsampling- liquid chromatography mass spectrometry method for the analysis of cefepime in human whole blood: Application to pediatric pharmacokinetic study / J. Pharm. Biomed. Anal. 2020. Vol. 179. N3. E 113002-113033. DOI:10.1016/j.k>ba.2019.113002

18. Kummer M., Sestakova N., Theurillat R., Thormann W. Monitoring of cefepime in urine by micellar electro kinetic capillary chromatography with UV detection and liquid chromatography coupled to mass spectrometry / J. Sep. Sci. 2018. Vol. 41. N 21. E 4067 - 4074. DOI:10.1002/jssc.201800763

19. Al-Attas A., Nasr J. J., El-Enany N., Belal F. A green capillary zone electrophoresis method for the simultaneous determination of piperacillin, tazobactam and cefepime in pharmaceutical formulations and human plasma / Biomed. Chromatogr. 2015. Vol. 29. N 12. E 1811 - 1818. DOI:10.1002/bmc.3500

20. Saviano M. A., Lourenco F. R. Rapid microbiological methods (RMMs) for evaluating the activity of cephalosporin antibiotics employing triphenyltetrazolium chloride / Talanta. 2018. Vol. 185. E 520 - 527. DOI:10.1016/j.talanta.2018.04.020

21. Kulapina E. G., Kulapina O. I., Ankina V. D. Screen-printed potentiometric sensors based on carbon materials for determining cefotaxime and cefuroxime / J. Anal. Chem. 2020. Vol. 75. N 2. E 231-237. DOI:10.1134/S1061934820020100

22. Ali R., Ali H. R., Batakoushy H. A., et al. A reductant colorimetric method for the rapid detection of certain cephalosporins via the production of gold and silver nanoparticles / Microchem. J. 2019. Vol. 146. E 864 - 871. DOI:10.1016/j.microc. 2019.02.023

23. Kulapina E. G., Tyutlikova M. S., Kulapina O. I., Dubasova A. E. Solid-contact potentiometric sensors for the determination of some cephalosporin antibiotics in pharmaceuticals and oral fluid / J. Anal. Chem. 2019. Vol. 74. N 2. E 52 - 58. DOI:10.1134/S1061934819070128

24. Kulapina E. G., Kulapina O. I., Cherdakova E. N., Ankina V D. Fotentiometric sensors sensitive to some cephalosporin antibiotics: properties, application / J. Anal. Chem. 2022. Vol. 77. N 8. E 963 - 973. DOI:10.1134/S1061934822080056

25. Pavon E., Martin-Rodriguez R., Perdigon A., Alba M. D. New trends in nanoclay-modified sensors / Inorganics. 2021. Vol. 9. N 6. E 43 - 66. DOI:10.3390/inorganics9060043

26. Ayad M. E, Trabik Y. A., Abdelrahman M. H., et al. Fotentiometric carbon quantum dots-based screen-printed arrays for nano-tracing gemifloxacin as a model fluoroquinolone implicated in antimicrobial resistance / Chemosensors. 2020. Vol. 9. N 8. E 8 - 24. DOI:10.3390/chemosensors9010008

27. Shawky A. M., El-Tohamy M. F. Highly functionalized modified metal oxides polymeric sensors for potentiometric determination of letrozole in commercial oral tablets and biosamples / Folymers. 2021. Vol. 13. N 9. E 1384 - 1401. DOI:10.3390/polyml3091384

28. Govindasamy M., Kumaravel S., Ramalingam R. J., et al. Facile synthesis of copper sulfide decorated reduced graphene oxide nanocomposite for high sensitive detection of toxic antibiotic in milk / Ultrason. Sonochem. 2019. Vol. 52. E 382 - 390. DOI:10.1016/j.ultsonch.2018.12.015

29. Shabani R., Rizi Z. L., Moosavi R. Selective potentiometric sensor for isoniazid ultra-trace determination based on Fe 3 0 4 nanoparticles modified carbon paste electrode (Fe304 /CPE) / Int. J. Nanosci. Nanotechnol. 2018. Vol. 14. N 3. E 241 - 249.

30. Veseli A., Mullallari E, Balidemaj E, et al. Electrochemical determination of erythromycin in drinking water resources by surface modified screen-printed carbon electrodes / Microchem. J. 2019. Vol. 148. E 412 - 418. DOI:10.1016/j.microc.2019.04.086

31. Prinith N. S., Manjunatha J. G. Surfactant modified electrochemical sensor for determination of anthrone — a cyclic voltammetry / Mater. Sci. Technol. 2019. Vol. 2. N 3. E 408 - 416. DOI:10.1016/j.mset.2019.05.004

32. Ziyatdinova G., Ziganshina E., Budnikov H. Electrooxidation of morin on glassy carbon electrode modified by carboxylated single-walled carbon nanotubes and surfactants / Electrochim. Acta. 2014. Vol. 145. E 209 - 216. DOI:10.1016/j.electacta.2014.08.062

33. Digua K., Kauffmann J. M., Delplancke J. L. Surfactant modified carbon paste electrode: Part 1: Electrochemical and microscopic characterization / Electroanalysis. 1994. Vol. 6. N 5 - 6. E 451 - 458. DOI:10.1002/elan.H40060515

34. Ali T. A., Abd-Elaal A. A., Mohamed G. G. Screen printed ion selective electrodes based on self-assembled thiol surfactant-gold-nanoparticles for determination of Cu (II) in different water samples / Microchem. J. 2021. Vol. 160. 105693. DOI:10.1016/j.microc.2020.105693

35. Ali T. A., Al-Sabagh A. Synthesis of thiol amine surfactant for sensor fabrication to determine chromium (III) ions in different water samples / Egypt. J. Chem. 2020. Vol. 64. N 1. E 177 - 185. DOI:10.21608/ejchem.2020.37861.2780

36. Ziyatdinova G. K., Romashkina S. A., Ziganshina Б. R., Budnikov H. C. Voltammetric determination of thymol on an electrode modified by coimmobilized carboxylated multiwalled carbon nanotubes and surfactants / J. Anal. Chem. 2018. Vol. 73. N 1. E 63 - 70. DOI:10.1134/S1061934818010148

37. Ziyatdinova G. K., Budnikov H. C. Voltammetric determination of tartrazine on an electrode modified with cerium dioxide nanoparticles and cetyltriphenylphosphonium bromide / J. Anal. Chem. 2022. Vol. 77. N 6. E 664 - 670. DOI:10.1134/S106193482206017X

38. Mashkovsky M. D. Medicines. — Moscow: Novaya volna, 2021. — 1216 p. [in Russian].

39. Alekseev V G. Bioinorganic chemistry of penicillins and cephalosporins. — Tver': Tver. Gos. Univ., 2009. — 104 p. [in Russian].

40. Maryanov В. M. Linearization method in instrumental titrimetry. — Tomsk: Izd. Tomsk. Univ., 2001. — 158 p. [in Russian].

41. Belyustin A. A. Potentiometry: physical and chemical basics and applications. — St. Petersburg: Lan', 2015. — 336 p. [in Russian].

42. Teubl B. J., Stojkovic В., Docter D., et al. The effect of saliva on the fate of nanoparticles / Clin. Oral Invest. 2018. Vol. 22. N 2. E 929 - 940. DOI:10.1007/s00784-017-2172-5

43. Savinov S. S., Anisimov A. A. Effect of conditions for sampling of human saliva on the results of determination of macroand micronutrients / J. Anal. Chem. 2020. Vol. 75. N 4. E 453 - 458. DOI:10.1134/S1061934820040139


Review

For citations:


Kulapina E.G., Mursalov R.K., Kulapina O.I., Ankina V.D., Cherdakova E.N. Modified planar sensors for cefepime determination. Industrial laboratory. Diagnostics of materials. 2023;89(3):5-13. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-3-5-13

Views: 407


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)