Study of the effect of accelerated electrons on the structural characteristics of the bovine serum albumin using liquid chromatography-mass spectrometry and high-resolution tandem mass spectrometry
https://doi.org/10.26896/1028-6861-2023-89-3-14-24
Abstract
A method for quantification of the dose effect of ionizing radiation on the structural characteristics of bovine serum albumin (BSA) in aqueous solution through identification of unique peptides of protein domain structures using high-resolution liquid chromatography-mass spectrometry is proposed. BSA with the initial concentration of 500 mg/liter in a physiological solution was exposed to irradiation at a dose rate of 18. 5 Gy/sec using an accelerated electron beam with the maximum energy of 1 MeV at an average beam current of 1 uA. The absorbed dose in the sample volume was estimated using a Fricke (ferrous sulphate) dosimeter. After irradiation of BSA solution at 0.3, 0.6,1.8, and 20 kGy we analyzed the structural integrity of the protein native form and then quantified the content. For this, masses more than 30 kDa were removed using centrifugation. Then BSA was subjected to enzymatic hydrolysis with the addition of trypsin solution, and the resulting peptides with a mass of more than 10 kDa were repeatedly removed. The resultant samples were then examined using liquid chromatography mass spectrometry (LC-MS) and high-resolution tandem mass spectrometry (HRMS-MS/MS). The content of intact protein molecules was assessed by determining the concentrations of unique peptides corresponding to each of the three domains into which the amino acid sequence of BSA was divided. Using the developed methodology, a change in the natural conformation of bovine serum albumin (denaturation) in water samples induced by ionizing radiation at a dose ranging from 0.3 to 20 kGy was revealed on average in 71% of protein molecules exposed to doses up to 1 kGy in 79% of molecules exposed to doses of 4 kGy and in 99 % to 100% of molecules exposed to doses of 8 and 20 kGy.
About the Authors
A. V. BrownRussian Federation
Arkady V Brown
119991, Moscow, Leninskie gory, 1-3
U. A. Bliznyuk
Russian Federation
Ulyana A. Bliznyuk
119991, Moscow, Leninskie gory, 1-2
P. Y. Borshchegovskaya
Russian Federation
Polina Yu. Borshchegovskaya
119991, Moscow, Leninskie gory, 1-2
V. S. Ipatova
Russian Federation
Victoria S. Ipatova
119991, Moscow, Leninskie gory, 1-2
O. Y. Khmelevsky
Russian Federation
Oleg Yu. Khmelevsky
119991, Moscow, Leninskie gory, 1-2
A. P. Chernyaev
Russian Federation
Alexander P Chernyaev
119991, Moscow, Leninskie gory, 1-2
I. A. Ananyeva
Russian Federation
Irina A. Ananyeva
119991, Moscow, Leninskie gory, 1-3
I. A. Rodin
Russian Federation
Igor A. Rodin
119991, Moscow, Leninskie gory, 1-3
119435, Moscow, B. Pirogovskaya ul., 2-2
References
1. Zhang Y, Dong L., Zhang J., et al. Adverse Effects of Thermal Food Processing on the Structural, Nutritional, and Biological Properties of Proteins / Annu. Rev. Food Sci. Technol. 2021. Vol. 12. N 1. E 259 - 286. DOI:10.1146/annurev-food-062320-012215
2. Orlien V, Rinnan A. Processing Effects on Protein Structure and Physicochemical Properties / Foods. 2022. Vol. 11. N 11. E 1607 - 1610. DOI:10.3390/foodslllll607
3. Nowshad E, Islam M. N., Khan M. S. Concentration and formation behavior of naturally occurring formaldehyde in foods / Agric. Food Secur. 2018. Vol. 7. N 1. E 17 - 25. DOI:10.1186/s40066-018-0166-4
4. Rachid C, Barone M. Chemicals in the Food Industry: Toxicological Concerns and Safe Use. 1s t Edition. — Switzerland: Springer International Publishing, 2020. — 70 p. DOI:10.1007/978-3-030-42943-0
5. Timakova R. T. Comparative characteristics of technological properties of radiation-treated meat raw materials / Pishch. Prom. 2020. Vol. 5. E 13 - 18 [in Russian]. DOI:10.24411/0235-2486-2020-10048
6. Rozhko T. V., Nemtseva E. V., Gardt M. V, et al. Enzymatic Responses to Low-Intensity Radiation of Tritium / Int. J. Mol. Sci. 2020. Vol. 21. N 22. E 8464 - 8478. DOI:10.3390/ijms21228464
7. Adibian M., Mami Y. Effect of Electron-Beam Irradiation on Enzyme Activities in Agaricus brunnescens / J. Pure Appl. Microbiol. 2018. Vol. 12. N 3. E 1435 - 1442. DOI:10.22207/jpam.12.3.46
8. Dril A. A., Rozhdestvenskaya L. N. Use of electron sterilization to increase the biological protein value and increase the shelf life of semi-finished oyster mushroom products / Izv Vuzov. Prikl. Khim. Biotekhnol. 2019. Vol. 9. N 3. E 500 - 508 [in Russian]. DOI:10.21285/2227-2925-2019-9-3-500-508
9. Pavlov A. N., Chizh T. V, Snegirev A. S., et al. Technological process of food irradiation and dosimetric support / Radiats. Gigiena. 2020. Vol. 13. N 4. E 40 - 50 [in Russian]. DOI:10.21514/1998-426X-2020-13-4-40-50
10. Giroux M., Lacroix M. Nutritional adequacy of irradiated meat — a review / Food Res. Int. 1998. Vol. 31. N 4. E 257 - 264. DOI:10.1016/S0963-9969(98)00092-1
11. Zhao L., Zhang Y., Pan Z., et al. Effect of electron beam irradiation on quality and protein nutrition values of spicy yak jerky / LWT — Food. Sci. Technol. 2017. Vol. 87. N 7. E 1 - 7. DOI:10.1016/j.lwt.2017.08.062
12. Zarei H., Bahreinipour M., Eskandari K., et al. Spectroscopic study of gamma irradiation effect on the molecular structure of bovine serum albumin / Vacuum. 2016. Vol. 136. E 91 - 96. DOI:10.1016/j.vacuum.2016.11.029
13. Liu G., Liu J., Tu Z., et al. Investigation of conformation change of glycated ovalbumin obtained by Co-60 gamma-ray irradiation under drying treatment / Innovative Food Sci. Emerging Technol. 2018. Vol. 47. E 286 - 291. DOI:10.1016/j.ifset.2018.03.011
14. Liu Y.-E, Oey I., Bremer P., et al. Modifying the Functional Properties of Egg Proteins Using Novel Processing Techniques: A Review / Compr. Rev. Food Sci. Food Saf 2019. Vol. 18. N 4. E 986 - 1002. DOI:10.1111/1541-4337.12464
15. Antosiewicz J. M., Shugar D. UV — Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications / Biophys. Rev. Vol. 8. N 2. E 163 - 177. DOI:10.1007Ы2551-016-0197-7
16. Mihaljev Z., Jaksic S., Balos M. Z., et al. Comparison of the Kjeldahl method, Dumas method and NIR method for total nitrogen determination in meat and meat products / J. Agroaliment. Proc. Technol. 2015. Vol. 21. N 4. E 365 - 370.
17. Barth A. Infrared spectroscopy of proteins / Biochim. Biophys. Acta. 2007. Vol. 1767. N 9. E 1073 - 1110. DOI:10.1016/j.bbabio.2007.06.004
18. Chang S. K. C, Zhang Y. Protein Analysis / Nielsen S. S. (ed.), Food Analysis. Food Science Text Series. — Springer, Cham. 2017. E 315-331. DOI:10.1007/978-3-319-45776-518
19. Oshokoya O. O., Roach C. A., Jiji R. D. Quantification of protein secondary structure content by multivariate analysis of deep-ultraviolet resonance Raman and circular dichroism spectroscopies / Anal. Methods. 2014. Vol. 6. N 6. E 1691 - 1699. DOI:10.1039/c3ay42032a
20. Pelton J. Т., McLean L. R. Spectroscopic methods for analysis of protein secondary structure / Anal. Biochem. 2000. Vol. 277. N 2. E 167 - 176. DOI:10.1006/abio.1999.4320
21. Murray R. K., Granner D. K., Mayes E A., Rodwell V W. Harper's Illustrated Biochemistry. 26<sup>th</sup> edition. — The McGraw-Hill Companies, Inc., 2003. — 693 p.
22. Gonzalez V D., Gugliotta L. M., Giacomelli С. E., Meira G. R. Latex of immunodiagnosis for detecting the Chagas disease: II. Chemical coupling of antigen Ag36 onto carboxylated latexes / J. Mater. Sci. Mater Med. 2008. Vol. 19. N 2. E 789 - 795. DOI:10.1007/sl0856-006-0041-x
23. Doumas В. Т., Bayse D. D., Carter R. J., et al. A candidate reference method for determination of total protein in serum. I. Development and validation / Clin. Chem. 1981. Vol. 27. N 10. P 1642 - 1650. DOI:10.1093/clinchem/27.10.1642
24. Francis G. Albumin and mammalian cell culture: implications for biotechnology applications / Cytotechnology. 2010. Vol. 62. N 1. E 1 - 16. DOI:10.1007/sl0616-010-9263-3
25. Huang B. X., Kim H. Y., Dass C. Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry / J. Am. Soc. Mass Spectrom. 2004. Vol. 15. N 8. E 1237 - 1247. DOI:10.1016/j.jasms.2004.05.004
26. Bliznyuk U. A., Borchegovskaya P. Yu., Chernyaev A. P., et al. Dose-rate effect of low-energy electron beam irradiation on bacterial content in chilled turkey / IOP Conf. Sen: Earth Environ. Sci. 2021. Vol. 640. N 3.032006. DOI:10.1088/1755-1315/640/3/032006
27. Krot V I., Golubeva E. N., Muzyka T. V, Stepanova O. Yu. Chemical methods of dosimetry. Ferrosulfate dosimetry method (Fricke dosimeter): manual for laboratory workshop. — Minsk: BSU, 2011. — 33 p. [in Russian].
28. Swissprot. Swiss Institute of Bioinformatics: Geneva, Switzerland. https://www.uniprot.org/uniprotkb/P02769/entry (accessed January 17, 2022).
Review
For citations:
Brown A.V., Bliznyuk U.A., Borshchegovskaya P.Y., Ipatova V.S., Khmelevsky O.Y., Chernyaev A.P., Ananyeva I.A., Rodin I.A. Study of the effect of accelerated electrons on the structural characteristics of the bovine serum albumin using liquid chromatography-mass spectrometry and high-resolution tandem mass spectrometry. Industrial laboratory. Diagnostics of materials. 2023;89(3):14-24. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-3-14-24