Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Study of the effect of accelerated electrons on the structural characteristics of the bovine serum albumin using liquid chromatography-mass spectrometry and high-resolution tandem mass spectrometry

https://doi.org/10.26896/1028-6861-2023-89-3-14-24

Abstract

A method for quantification of the dose effect of ionizing radiation on the structural characteristics of bovine serum albumin (BSA) in aqueous solution through identification of unique peptides of protein domain structures using high-resolution liquid chromatography-mass spectrometry is proposed. BSA with the initial concentration of 500 mg/liter in a physiological solution was exposed to irradiation at a dose rate of 18. 5 Gy/sec using an accelerated electron beam with the maximum energy of 1 MeV at an average beam current of 1 uA. The absorbed dose in the sample volume was estimated using a Fricke (ferrous sulphate) dosimeter. After irradiation of BSA solution at 0.3, 0.6,1.8, and 20 kGy we analyzed the structural integrity of the protein native form and then quantified the content. For this, masses more than 30 kDa were removed using centrifugation. Then BSA was subjected to enzymatic hydrolysis with the addition of trypsin solution, and the resulting peptides with a mass of more than 10 kDa were repeatedly removed. The resultant samples were then examined using liquid chromatography mass spectrometry (LC-MS) and high-resolution tandem mass spectrometry (HRMS-MS/MS). The content of intact protein molecules was assessed by determining the concentrations of unique peptides corresponding to each of the three domains into which the amino acid sequence of BSA was divided. Using the developed methodology, a change in the natural conformation of bovine serum albumin (denaturation) in water samples induced by ionizing radiation at a dose ranging from 0.3 to 20 kGy was revealed on average in 71% of protein molecules exposed to doses up to 1 kGy in 79% of molecules exposed to doses of 4 kGy and in 99 % to 100% of molecules exposed to doses of 8 and 20 kGy.

About the Authors

A. V. Brown
Faculty of Chemistry, Lomonosov Moscow State University
Russian Federation

Arkady V Brown

119991, Moscow, Leninskie gory, 1-3



U. A. Bliznyuk
Faculty of Physics, Lomonosov Moscow State University; Skobeltsyn Institute of Nuclear Physics
Russian Federation

Ulyana A. Bliznyuk

119991, Moscow, Leninskie gory, 1-2



P. Y. Borshchegovskaya
Faculty of Physics, Lomonosov Moscow State University; Skobeltsyn Institute of Nuclear Physics
Russian Federation

Polina Yu. Borshchegovskaya

119991, Moscow, Leninskie gory, 1-2



V. S. Ipatova
Skobeltsyn Institute of Nuclear Physics
Russian Federation

Victoria S. Ipatova

119991, Moscow, Leninskie gory, 1-2



O. Y. Khmelevsky
Faculty of Physics, Lomonosov Moscow State University
Russian Federation

Oleg Yu. Khmelevsky

119991, Moscow, Leninskie gory, 1-2



A. P. Chernyaev
Faculty of Physics, Lomonosov Moscow State University; Skobeltsyn Institute of Nuclear Physics
Russian Federation

Alexander P Chernyaev

119991, Moscow, Leninskie gory, 1-2



I. A. Ananyeva
Faculty of Chemistry, Lomonosov Moscow State University
Russian Federation

Irina A. Ananyeva

119991, Moscow, Leninskie gory, 1-3



I. A. Rodin
Faculty of Chemistry, Lomonosov Moscow State University; I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Department of Epidemiology and Evidence-Based Medicine
Russian Federation

Igor A. Rodin

119991, Moscow, Leninskie gory, 1-3
119435, Moscow, B. Pirogovskaya ul., 2-2



References

1. Zhang Y, Dong L., Zhang J., et al. Adverse Effects of Thermal Food Processing on the Structural, Nutritional, and Biological Properties of Proteins / Annu. Rev. Food Sci. Technol. 2021. Vol. 12. N 1. E 259 - 286. DOI:10.1146/annurev-food-062320-012215

2. Orlien V, Rinnan A. Processing Effects on Protein Structure and Physicochemical Properties / Foods. 2022. Vol. 11. N 11. E 1607 - 1610. DOI:10.3390/foodslllll607

3. Nowshad E, Islam M. N., Khan M. S. Concentration and formation behavior of naturally occurring formaldehyde in foods / Agric. Food Secur. 2018. Vol. 7. N 1. E 17 - 25. DOI:10.1186/s40066-018-0166-4

4. Rachid C, Barone M. Chemicals in the Food Industry: Toxicological Concerns and Safe Use. 1s t Edition. — Switzerland: Springer International Publishing, 2020. — 70 p. DOI:10.1007/978-3-030-42943-0

5. Timakova R. T. Comparative characteristics of technological properties of radiation-treated meat raw materials / Pishch. Prom. 2020. Vol. 5. E 13 - 18 [in Russian]. DOI:10.24411/0235-2486-2020-10048

6. Rozhko T. V., Nemtseva E. V., Gardt M. V, et al. Enzymatic Responses to Low-Intensity Radiation of Tritium / Int. J. Mol. Sci. 2020. Vol. 21. N 22. E 8464 - 8478. DOI:10.3390/ijms21228464

7. Adibian M., Mami Y. Effect of Electron-Beam Irradiation on Enzyme Activities in Agaricus brunnescens / J. Pure Appl. Microbiol. 2018. Vol. 12. N 3. E 1435 - 1442. DOI:10.22207/jpam.12.3.46

8. Dril A. A., Rozhdestvenskaya L. N. Use of electron sterilization to increase the biological protein value and increase the shelf life of semi-finished oyster mushroom products / Izv Vuzov. Prikl. Khim. Biotekhnol. 2019. Vol. 9. N 3. E 500 - 508 [in Russian]. DOI:10.21285/2227-2925-2019-9-3-500-508

9. Pavlov A. N., Chizh T. V, Snegirev A. S., et al. Technological process of food irradiation and dosimetric support / Radiats. Gigiena. 2020. Vol. 13. N 4. E 40 - 50 [in Russian]. DOI:10.21514/1998-426X-2020-13-4-40-50

10. Giroux M., Lacroix M. Nutritional adequacy of irradiated meat — a review / Food Res. Int. 1998. Vol. 31. N 4. E 257 - 264. DOI:10.1016/S0963-9969(98)00092-1

11. Zhao L., Zhang Y., Pan Z., et al. Effect of electron beam irradiation on quality and protein nutrition values of spicy yak jerky / LWT — Food. Sci. Technol. 2017. Vol. 87. N 7. E 1 - 7. DOI:10.1016/j.lwt.2017.08.062

12. Zarei H., Bahreinipour M., Eskandari K., et al. Spectroscopic study of gamma irradiation effect on the molecular structure of bovine serum albumin / Vacuum. 2016. Vol. 136. E 91 - 96. DOI:10.1016/j.vacuum.2016.11.029

13. Liu G., Liu J., Tu Z., et al. Investigation of conformation change of glycated ovalbumin obtained by Co-60 gamma-ray irradiation under drying treatment / Innovative Food Sci. Emerging Technol. 2018. Vol. 47. E 286 - 291. DOI:10.1016/j.ifset.2018.03.011

14. Liu Y.-E, Oey I., Bremer P., et al. Modifying the Functional Properties of Egg Proteins Using Novel Processing Techniques: A Review / Compr. Rev. Food Sci. Food Saf 2019. Vol. 18. N 4. E 986 - 1002. DOI:10.1111/1541-4337.12464

15. Antosiewicz J. M., Shugar D. UV — Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications / Biophys. Rev. Vol. 8. N 2. E 163 - 177. DOI:10.1007Ы2551-016-0197-7

16. Mihaljev Z., Jaksic S., Balos M. Z., et al. Comparison of the Kjeldahl method, Dumas method and NIR method for total nitrogen determination in meat and meat products / J. Agroaliment. Proc. Technol. 2015. Vol. 21. N 4. E 365 - 370.

17. Barth A. Infrared spectroscopy of proteins / Biochim. Biophys. Acta. 2007. Vol. 1767. N 9. E 1073 - 1110. DOI:10.1016/j.bbabio.2007.06.004

18. Chang S. K. C, Zhang Y. Protein Analysis / Nielsen S. S. (ed.), Food Analysis. Food Science Text Series. — Springer, Cham. 2017. E 315-331. DOI:10.1007/978-3-319-45776-518

19. Oshokoya O. O., Roach C. A., Jiji R. D. Quantification of protein secondary structure content by multivariate analysis of deep-ultraviolet resonance Raman and circular dichroism spectroscopies / Anal. Methods. 2014. Vol. 6. N 6. E 1691 - 1699. DOI:10.1039/c3ay42032a

20. Pelton J. Т., McLean L. R. Spectroscopic methods for analysis of protein secondary structure / Anal. Biochem. 2000. Vol. 277. N 2. E 167 - 176. DOI:10.1006/abio.1999.4320

21. Murray R. K., Granner D. K., Mayes E A., Rodwell V W. Harper's Illustrated Biochemistry. 26<sup>th</sup> edition. — The McGraw-Hill Companies, Inc., 2003. — 693 p.

22. Gonzalez V D., Gugliotta L. M., Giacomelli С. E., Meira G. R. Latex of immunodiagnosis for detecting the Chagas disease: II. Chemical coupling of antigen Ag36 onto carboxylated latexes / J. Mater. Sci. Mater Med. 2008. Vol. 19. N 2. E 789 - 795. DOI:10.1007/sl0856-006-0041-x

23. Doumas В. Т., Bayse D. D., Carter R. J., et al. A candidate reference method for determination of total protein in serum. I. Development and validation / Clin. Chem. 1981. Vol. 27. N 10. P 1642 - 1650. DOI:10.1093/clinchem/27.10.1642

24. Francis G. Albumin and mammalian cell culture: implications for biotechnology applications / Cytotechnology. 2010. Vol. 62. N 1. E 1 - 16. DOI:10.1007/sl0616-010-9263-3

25. Huang B. X., Kim H. Y., Dass C. Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry / J. Am. Soc. Mass Spectrom. 2004. Vol. 15. N 8. E 1237 - 1247. DOI:10.1016/j.jasms.2004.05.004

26. Bliznyuk U. A., Borchegovskaya P. Yu., Chernyaev A. P., et al. Dose-rate effect of low-energy electron beam irradiation on bacterial content in chilled turkey / IOP Conf. Sen: Earth Environ. Sci. 2021. Vol. 640. N 3.032006. DOI:10.1088/1755-1315/640/3/032006

27. Krot V I., Golubeva E. N., Muzyka T. V, Stepanova O. Yu. Chemical methods of dosimetry. Ferrosulfate dosimetry method (Fricke dosimeter): manual for laboratory workshop. — Minsk: BSU, 2011. — 33 p. [in Russian].

28. Swissprot. Swiss Institute of Bioinformatics: Geneva, Switzerland. https://www.uniprot.org/uniprotkb/P02769/entry (accessed January 17, 2022).


Review

For citations:


Brown A.V., Bliznyuk U.A., Borshchegovskaya P.Y., Ipatova V.S., Khmelevsky O.Y., Chernyaev A.P., Ananyeva I.A., Rodin I.A. Study of the effect of accelerated electrons on the structural characteristics of the bovine serum albumin using liquid chromatography-mass spectrometry and high-resolution tandem mass spectrometry. Industrial laboratory. Diagnostics of materials. 2023;89(3):14-24. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-3-14-24

Views: 437


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)