Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Control of industrial products by microfocus radiography

https://doi.org/10.26896/1028-6861-2023-89-3-31-37

Abstract

X-ray methods in comparison with other control methods are characterized by high information content, clarity and efficiency. The paper presents the results of the use of microfbcus radiography in the control and diagnostics of industrial products. A distinctive feature of the microfbcus radiography method is the use of an X-ray source with a focal spot of micron sizes and a survey geometry with a direct geometric increase in the object of study. The minimum dimensions of the rendered structures in this case are not limited by the pixel size of the image receiver and can be significantly smaller. It is shown that the use of the microfbcus radiography method makes it possible to increase the information content of the resulting radiographs by at least an order of magnitude, due to an increase in spatial resolution. At the same time, the technical means for implementing the described method can be small-sized, designed for use in non-stationary and non-specialized conditions. The results obtained can be used in scientific research and industrial control in the following areas: electronics, additive technologies, instrumentation and others.

About the Authors

N. N. Potrakhov
St. Petersburg Electrotechnical University (LETI)
Russian Federation

Nikolai N. Potrakhov

197022, St. Petersburg, ul. Professora Popova, 5



K. K. Guk
St. Petersburg Electrotechnical University (LETI)
Russian Federation

Karina K. Guk

197022, St. Petersburg, ul. Professora Popova, 5



V. B. Bessonov
St. Petersburg Electrotechnical University (LETI)
Russian Federation

Viktor B. Bessonov

197022, St. Petersburg, ul. Professora Popova, 5



References

1. Ivanov S. A., Shchukin G. A. X-ray tubes for technical purposes. — Leningrad: Energoatomizdat, 1989. — 200 p. [in Russian].

2. Podymsky A. A., Potrakhov N. N. Microfocus X-ray tubes of a new generation / Kontrol'. Diagn. 2017. N 4. E 4 - 8 [in Russian]. DOI:10.14489/td.2017.04

3. Potrakhov N. N., Bessonov V В., Obodovsky A. V, et al. 0,2BPM64-200 microfocus X-ray tube for projection radiography / Russ. J. Nondestract. Testing. 2017. Vol. 53. N 3. P 227 - 230. DOI:10.1134/S106183091703007X

4. Burtelov V A., Kudryashov А. V., Sheshin Е. P., Khuda Khalid Khamid Majma. Compact sources of X-ray radiation / Tr. MFTI. 2019. Vol. 11. N 2(42). E 116 - 155 [in Russian].

5. Miroshnichenko S. I. Digital receivers of X-ray images: monograph. — Kiev: Meditsina Ukrainy 2014. — 100 p. [in Russian].

6. Kozhevnikov D., Chelkov G., Demichev M., et al. Performance and applications of GaAs: Cr-based Medipix detector in X-ray CT / J. Instr. 2017. Vol. 12. N 1. E C01005.

7. Kim H., Cunningham I., Yin Z., Cho G. On the development of digital radiography detectors: a review / Int. J. Prec. Eng. Manufact. 2008. Vol. 9. E 86 - 100.

8. Grigorov M. S. Classification of digital systems for nondestructive x-ray testing of microelectronic products / Tr. SPIIRAN. 2014. N 4(35). E 94 - 107 [in Russian].

9. Potrakhov N. N. Diagnostic capabilities of microfocus radiography / Med. Tekh. 2014. N 5(287). E 8 - 12 [in Russian].

10. Microfocus radiography in medicine. — St. Petersburg: SPbGETU "LETT", 2015. — 91 p. [in Russian].

11. Tereshchenko S. A. Methods of computational tomography. — Moscow: Fizmatlit. 2004. — 318 p. [in Russian].

12. Bessonov V В., Potrakhov N. N., Obodovsky A. V, et al. X-ray tomography / Fotonika. 2019. Vol. 13. N 7. E 688 - 693 [in Russian].

13. Potrakhov N. N., Gryaznov A. Yu., Zhamova К. K., et al. Microfocus radiography: research results of St. Petersburg State Electrotechnical University "LETI" / Terr. NDT 2016. N 3. E 54 [in Russian].

14. Potrakhov N. N., Bessonov V В., Obodovsky A. V, et al. Installations for X-ray control (review) / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 10. E 35 - 42 [in Russian].

15. Potrakhov N. N., Khayutin S. G., Lifshits V A., Oses R. "KROS" PRDE device for express determination of the crystallographic orientation of cubic single crystals from inverse Laue patterns / Zavod. Lab. Diagn. Mater. 2015. Vol. 81. N 8. E 27-3 0 [in Russian].

16. Potrakhov E. N., Potrakhov N. N., Podymsky A. A., et al. Quality control of small-diameter circumferential welds using the RAP-120PM X-ray machine / Zavod. Lab. Diagn. Mater. 2017. Vol. 83. N 6. E 36 - 38 [in Russian].

17. Alykov A., Korbankova Т., Kulibaba A., et al. X-ray control of electronic component base / Elektronika Nauka Tekhnol. Biznes. 2021. N 6(207). E 62 - 65 [in Russian]. DOI:10.22184/1992-4178.2021.207.6.62.65

18. Korzh D. A., Sevryugin P. V Analysis of methods and means of input control of printed circuit boards / Fund. Probl. Radioelektr. Priborostr. 2018. Vol. 18. N 5. E 1139 - 1142 [in Russian].

19. Potrakhov N. N. Microfocus radiography in dentistry and maxillofacial surgery. — St. Petersburg: Tekhnomedia, 2007. — 184 p. [in Russian].

20. Ustinov A. O. Systems of X-ray inspection of electronic components of domestic production / Nanoindustriya. 2020. N S96-2. E 515 - 517 [in Russian]. DOI:10.22184/1993-8578.2020.13.3s.515.517

21. Bessonov V В., Larionov I. A., Obodovsky A. V Features of the development of software and hardware systems for microfocus X-ray computed tomography / Fiz. Osnovy Priborostr. 2019. Vol. 8. N 4(34). E 23 - 33 [in Russian].


Review

For citations:


Potrakhov N.N., Guk K.K., Bessonov V.B. Control of industrial products by microfocus radiography. Industrial laboratory. Diagnostics of materials. 2023;89(3):31-37. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-3-31-37

Views: 326


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)