A refined method for estimating the interlayer shear modulus by correcting the deflection of polymer composite specimens
https://doi.org/10.26896/1028-6861-2023-89-3-57-69
Abstract
Shear and interlayer characteristics of polymer fiber composites, in contrast to metals, play a decisive role in the deformation and fracture processes. In this regard, special methods have been developed to determine the interlayer bending strength of a short beam and the interlayer shear modulus by deflection correction. At the same time, the accepted hypotheses about the distribution of shear stresses, for example, by the Zhuravsky formula, are too simple and do not provide the determination of the correction and calculation of the shear modulus with a rather high accuracy. The use of the Saint-Venant - Lekhnitzky solution for an orthotropic beam instead of the simplest parabolic distribution potentially makes it possible to take into account all the shear stresses occurring in the beam, as well as their distribution over the height and width of the beam, which should increase the accuracy of determining the deflection correction and interlayer shear modulus, respectively. Since the strict solution is presented in a series of hyperbolic functions, its practical use is rather difficult. We present an exact approximation of the strict solution by simpier quadratic dependences, which provides determination of the deflection correction and the shear modulus with a high accuracy. It is shown that for real composite beam-type specimens the use of the refined shear stress distribution with allowance for the heterogeneity of stresses along the beam width gives a negligibly small correction for the deflection compared to the simplified parabolic distribution according to the Zhuravsky formula. The numerical verification was carried out using the finite element. Special tests of fiberglass specimens of different widths for three-point bending also showed no increase in the deflection with increasing beam width, which indicates an insignificant influence of the heterogeneity of tangential stresses on the deflection.
About the Authors
A. N. PolilovRussian Federation
Alexander N. Polilov
101000, Moscow, Maly Kharitonyevsky per. 4, 4
D. D. Vlasov
Russian Federation
Danila D. Vlasov
101000, Moscow, Maly Kharitonyevsky per. 4, 4
N. A. Tatus
Russian Federation
Nikolai A. Tatus
101000, Moscow, Maly Kharitonyevsky per. 4, 4
References
1. Vasiliev V V Mechanics of Constructions from Composite Materials. — Moscow: Mashinostroenie, 1988. — 272 p. [in Russian].
2. Polilov A. N. Etudes on the Mechanics of Composites. — Moscow: Fizmatlit, 2015. — 320 p. ISBN 978-5-9221-1617-6 [in Russian].
3. Polilov A. N., Tatus' N. A. Experience Nature as a Basis for Building Strong Composite Structures / Vestn. MGSU. 2021. Vol. 16. N 9. P 1191 - 1216 [in Russian]. DOI:10.22227/1997-0935.2021.9.1191-1216
4. Mileiko S. Т., Kolchin A. A., Galyshev S. N., et al. New Metal Matrix Composites in Institute of Solid State Physics of RAS / Kompoz. Nanostr. 2020. Vol. 12. N 3(47). P 88 - 100 [in Russian]. DOI:10.36236/1999-7590-2020-12-3-88-100
5. Flora E, Pinto E, Meo M. Manufacturing and Characterisation of a New Thermal Pre-Stressed Carbon Fibre-Reinforced Lattice Core for Sandwich Panels / Journal of Composite Materials. 2022. N 56(8). P 1233 - 1254. DOI:10.1177/00219983211021659
6. Polilov A. N., Khokhlov V K. Calculation Criterion for the Strength of Composite Beams in Bending / Mashinovedenie. 1979. N 2. P 53 - 57 [in Russian].
7. Olegin I. P., Burnysheva T. V, Laperdina N. A. Determination of the Effective Stiffness of a Unidirectional Layer by the Finite Element Method and Approximate Formulas / Zavod. Lab. Diagn. Mater. 2021. Vol. 87. N 3. P 40 - 50 [in Russian]. DOI:10.26896/1028-6861-2021-87-3-40-50
8. Kriven G. I., Lykosova E. D. Strength Analysis of Fiber Composites Modified with Various Nanofibers in the Case Of Pure Shear Along the Fiber / Mekh. Kompoz. Mater. Konstr. 2021. Vol. 27. N 1. P 125 - 142 [in Russian]. DOI:10.33113/mkmk.ras.2021.27.01.125_142.09
9. Oleinikov A. I. Strength Criterion Variants of Polymeric Unidirectional Composites by Inter-Fibre Fracture Conditions with there is a Transverse Compression / Prikl. Matem. Mekh. 2022. Vol. 86. N 2. P 223 - 234 [in Russian]. DOI:10.31857/S0032823522020102
10. Sieberer S., Savandaiah C., LeBlhumer J., Schagerl M. Shear Property Measurement of Additively Manufactured Continuous Fibre Reinforced Plastics by in-Plane Torsion Testing / Additive Manufacturing. 2022. Vol. 55. 102805. DOI:10.1016/j.addma.2022.102805
11. Tarnopolsky Yu. M., Kintsis T. Ya. Methods for Static Testing of Reinforced Plastics. 3<sup>rd</sup> edition. — Moscow: Khimiya, 1981. — 271 p. [in Russian].
12. Paimushin V N., Gazizullin R. K., Shishov M. A. Flat Internal Buckling Modes of Fibrous Composite Elements under Tension and Compression at the Mini- and Microscale / Journal of Applied Mechanics and Technical Physics. 2019. Vol. 60. N 3. P 548 - 559. DOI:10.1134/S0021894419030180
13. Merzkirch M., Foecke T. Investigation of the Interlaminar Shear Properties of Fiber-Reinforced Polymers via Flexural Testing Using Digital Image Correlation / Materials Performance and Characterization. 2020. Vol. 9(5). DOI:10.1520/MPC20190206
14. Merzkirch M., Foecke T. 10° off-Axis Testing of CFRP Using DIC: A Study on Strength, Strain and Modulus / Composites Part B: Engineering. 2020. Vol. 196. 108062. DOI:10.1016/j.compositesb.2020.108062
15. Polilov A. N. Experimental Mechanics of Composites. Textbook for Technical Universities. 2<sup>nd</sup> edition. — Moscow: MSTU im. N. E. Baumana, 2018. — 375 p. [in Russian].
16. Banat D. Load-Carrying Capacity of the GFRP and CFRP Composite Beams Subjected to Three-Point Bending Test — Numerical Investigations / Mechanics and Mechanical Engineering. 2019. Vol. 23(1). P 277 - 286. DOI:10.2478/mme-2019-0037
17. Timoshenko S. P. History of Strength of Materials. — McGraw-Hill, 1953. — 452 p.
18. Malinin N. N. Who is Who in Strength of Materials. — Moscow: MSTU im. N. E. Baumana, 2000. — 248 p. ISBN 5-7038-1326-3 [in Russian].
19. Rabotnov Yu. N. Mechanics of a Deformable Solid Body. 2<sup>nd</sup> edition. — Moscow: Nauka, 1988. — 712 p. [in Russian].
20. Lekhnitsky S. G. Theory of Elasticity of an Anisotropic Body. — Moscow - Leningrad: Gostekhizdat, 1950. — 300 p. [in Russian].
21. Lekhnitsky S. G. Torsion of Anisotropic and Inhomogeneous Rods. — Moscow: Nauka, 1971. — 240 p. [in Russian].
22. Polyakov V N., Zhigun I. G. Contact Problem for Composite Beams / Mekh. Polimerov. 1977. N 1. P 63 - 74 [in Russian].
23. Miheev V P., Muranov A. N., Gusev S. A. Experimental Definition of the Module of Inter layered Shift of the Layred Carbon Fibre Reinforced Plastic / Konstr. Kompoz. Mater. 2015. N 4(140). P 46 - 50 [in Russian].
24. Zhigun V I., Plume E. Z., Mujzhnieks K. I., Krasnov L. L. Simple and Reliable Methods for Determining the Shear Moduli of Structural Materials / Mekh. Kompoz. Mater. Konstr. 2019. Vol. 25. N 4. P 473 - 491 [in Russian]. DOI:10.33113/mkmk.ras.2019.25.04.473_491.02
25. Zhigun V I., Plume E. Z., Mujzhnieks K. I., Krasnov L. L. Universal Methods for Determining the Shear Modules of Composite Materials / Mekh. Kompoz. Mater. Konstr. 2020. Vol. 26. N 3. P 313 - 326 [in Russian]. DOI:10.33113/mkmk.ras.2020.26.03.313_326.02
26. Dudarkov Y. I., Limonin M. V Determination of the transverse shear stress in layered composites / Zavod. Lab. Diagn. Mater. 2020. Vol. 86. N 2. P 44 - 53 [in Russian]. DOI:10.26896/1028-6861-2020-86-2-44-53
27. Firsanov V V Computational Models of Beam Bending Taking into Account Shear Deformation / Mekh. Kompoz. Mater. Konstr. 2020. Vol. 26. N 1. P 98 - 107 [in Russian]. DOI:10.33113/mkmk.ras.2020.26.01.098_107.06
28. Guseinov K., Sapozhnikov S. В., Kudryavtsev O. A. Features of Three-Point Bending Tests for Determining out-ofPlane Shear Modulus of Layered Composites / Mechanics Of Composite Materials. 2022. Vol. 58. N 2. P 155 - 168. DOI:10.1007/s11029-022-10020-7
Review
For citations:
Polilov A.N., Vlasov D.D., Tatus N.A. A refined method for estimating the interlayer shear modulus by correcting the deflection of polymer composite specimens. Industrial laboratory. Diagnostics of materials. 2023;89(3):57-69. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-3-57-69