Probability of failure of a pipe exposed to seismic displacement and internal pressure
https://doi.org/10.26896/1028-6861-2023-89-3-70-79
Аннотация
The failure probability and the reliability index have been determined for a pipe submitted to internal pressure, exhibiting a corrosion defect, embedded in a soil with a ground reaction, and underwent the displacement due to seismic activity. Results are obtained by computing the condition of failure: strain demand higher than strain resistance which is typically the Strain Based Design (SBD) basis. From the probabilistic point of view, this condition results in the overlay of the two probability distributions, namely, demand and resistance. An analytical method is proposed to compute the common area between the strain demand and resistance distribution and then to get the probability of failure. The strain demand is assumed to follow a power-law distribution and the strain resistance is a Normal one. The strain demand is computed assuming that the probability density of seismic waves follows a Gutenberg - Richter distribution law. This simple method is also used to predict the failure probability of different reference periods or seismic zone. It is also used to examine the influence of the coefficient of variation of the strain resistance distribution when using vintage pipe steels.
Ключевые слова
Об авторах
J.-P. Ahonsu KomlaФранция
Jean-Pierre Ahonsu Komla
57070, Metz
G. Pluvinage
Франция
Guy Pluvinage
57070, Metz
J. Capelle
Франция
Julien Capelle
57070, Metz
Список литературы
1. I. Pluvinage G. Pipe defect assessment made by strain-based design / Sci. Technol. Oil Oil Prod. Pipeline Transp. 2019. Vol. 9. N 1 . P67-75 .
2. Kelil Taieb, Amara Mouna, Hadj Meliani Mohammed, Nasser Muthanna Bassam Gamal, Pluvinage G. Assessment of API X65 steel pipe puffiness by a strain-based design (SBD) approach under bi-axial loading / Eng. Failure Anal. 2019. Vol. 104. P 578 - 588.
3. DNV 2000, DNV-OS-F101 Submarine Pipeline Systems, det Norske Veritas, 2000.
4. CSA Z662 Oil and Gas Pipeline Systems, Canadian Standards Association 1999.
5. ASME B31.8. Gas Transmission, and Distribution Piping Systems. American Society of Mechanical Engineers. — New York, 2012.
6. API RP 1111. Design, Construction, Operation and Maintenance of Offshore Hydrocarbon Pipelines (Limit State Design). — American Petroleum Institute, 1998.
7. Pluvinage G. and Sapounov V. Prbvision statistique du comportement des matbriaux / Editor CEPADUES, 2006 [in French].
8. Matvienko Yu. G. The simplified approach for estimating probabilistic safety factors in fracture mechanics / Eng. Failure Anal. 2020. Vol. 117. Article 104814. DOI:10.1016/j.engfailanal.2020.104413
9. Jallouf Salim. Approche probabiliste du dimensionnement contre le risque de rupture. — Metz: Thesis University of Metz, 2006 [in French].
10. USACE 1997. Risk-based analysis in Geotechnical Engineering for Support of Planning Studies, Engineering and Design US Army Corps of Engineers, Department of Army, Washington, DC, 1997. P 20314-100.
11. EN 1998-4. Eurocode 8: design and dimensioning of structures for their resistance to earthquakes. Part 4: silos, tanks, and pipelines (P06-034: 2007-03, NA: 2008-01), 1998.
12. Gutenberg В., Richter C. F. Magnitude and Energy of Earthquakes / Ann. Geofis. 1956. N 9. P 1 - 15.
13. Wierzbicki Т., Xue L. Ductile fracture initiation and propagation modeling using damage plasticity theory / Eng. Fracture Mech. 2008. P 3276 - 3293.
14. Rice J. R. and Tracey D. M. On the ductile, in triaxial stress fields / J. Mech. Phys. Solids. 1969. Vol. 26. P 163 - 186.
15. Gouair H., Azari Z., Cicliov D et Pluvinage G. Tenacite d'un materiau ductile; un modele base sur la distribution locale critique de la deformation / Mater. Techniques. 1995. N 12. P7-1 2 [in French].
16. Mac Clintock F. A. A Criterion for Ductile Fracture by the Growth of Holes / J. Appl. Mech. 1968. Vol. 35. E 363.
17. Hancock J. W. and Mac Kenzie A. C. On the Mechanisms of Ductile Failure in High-Strength Steels / J. Mech. Phys. Solids. 1976. Vol. 24. E 47 - 169.
18. Dhiab A., Gouair H., Azari Z., Pluvinage G. Dynamic ductile failure of xcl8 steel: statistical aspects / Probl. Strength Spec. Publ. 1996. Vol. 96. E 38 - 46.
19. Griffith. J. R. and Owen. D. R. An elasric plastic stress analysis for a notched bar in plane strain bending / J. Mech. Phys. Solids. 1971. Vol. 19. E 419 - 431.
20. Barsoum I. and Faleskog J. Rupture mechanisms in combined tension and shear. Experiments / Int. J. Solids Struct. 2007. Vol. 44. E 1768 - 1786.
21. Yingbin Bao, Tomasz Wierzbicki. On fracture locus in the equivalent strain and stress triaxiality space / Int. J. Mech. Sci. 2004. Vol. 46. Issue 1. E 81 - 98.
22. Nahshon K. and Hutchinson J. W. Modification of the Gurson model for shear failure / Eur. J. Mech. A. Solids. 2008. Vol. 27. N 1. E 1 - 17.
23. Paredes M., Wierzbicki T. and Zelenak P. Prediction of crack initiation and propagation in X70 pipeline steel / Eng. Fracture Mech. 2016. Vol. 168. E 92 - 111.
24. BRGM Evaluation probabilistique de l'alea sismique a l'echelle du territoire national — Etape 3-EPAS3, BRGM/RP-50532-FR 1997. Novembre [in French].
25. Pluvinage G. Fatigue and Fracture emanating from notches. — Editor Kluwer, 2003 [in French].
Рецензия
Для цитирования:
Ahonsu Komla J., Pluvinage G., Capelle J. Probability of failure of a pipe exposed to seismic displacement and internal pressure. Заводская лаборатория. Диагностика материалов. 2023;89(3):70-79. https://doi.org/10.26896/1028-6861-2023-89-3-70-79
For citation:
Ahonsu Komla I., Pluvinage G., Capelle J. Probability of failure of a pipe exposed to seismic displacement and internal pressure. Industrial laboratory. Diagnostics of materials. 2023;89(3):70-79. https://doi.org/10.26896/1028-6861-2023-89-3-70-79