Preview

Industrial laboratory. Diagnostics of materials

Advanced search

Study of the microstructure of metastable austenitic chromium manganese steel 14Kh15G9ND by optical and electron microscopy

https://doi.org/10.26896/1028-6861-2023-89-4-38-44

Abstract

Modern metallography being a complex of qualitative and quantitative methods is widely used to analyze the microstructure of metal alloys. We present the results of studying the microstructure of austenitic chromium-manganese steel 14Kh15G9ND by optical and electron microscopy. The method of etching and the reagent, the most suitable for this steel grade, which provide identification of the main structural and phase components (austenite, twins, slip strips) of the steel were selected using the existing techniques. The results of optical and scanning microscopy of the samples deformed with a different degree of cold plastic deformation were compared with each other. It is shown that electrochemical etching in an aqueous solution of chromium anhydride should be used for qualitative determination of the steel microstructure. Optimal parameters of the current density and voltage were also determined. The results obtained can be used for optical microscopy of chromium-manganese steels, as well as for a more complete study of the dislocation structures present in them using scanning microscopy.

About the Authors

M. A. Chernigin
Central Research Institute Burevestnik
Russian Federation

 1A, Sormovskoe sh., Nizhny Novgorod, 603950



S. A. Sorokina
R. E. Alekseev Nizhny Novgorod State Technical University
Russian Federation

 24, ul. Minina, Nizhny Novgorod, 603950



R. A. Vorobyev
R. E. Alekseev Nizhny Novgorod State Technical University; Central Research Institute Burevestnik
Russian Federation

 24, ul. Minina, Nizhny Novgorod, 603950

 1A, Sormovskoe sh., Nizhny Novgorod, 603950



References

1. Bolshakov V. I., Sukhomlin G. D., Laukhin D. V. Atlas of structures of metals and alloys. — Dnepropetrovsk: PGASA, 2010. — 174 p. [in Russian].

2. Andrushevich A. A. Atlas of microstructures of ferrous and non-ferrous metals: educational visual aid. — Minsk: BGATU, 2012. — 100 p. [in Russian].

3. Gulyaev A. P. Metallovedenie. — Moscow: Metallurgiya, 1986. — 544 p. [in Russian].

4. Gonchar A. V., Klyushnikov A. A., Mishakin V. V. The effect of plastic deformation and subsequent heat treatment on the acoustic and magnetic properties of 12Khl8N10T steel / Zavod. Lab. Diagn. Mater. 2019. Vol. 85. N 2. P. 23 – 28 [in Russian]. DOI: 10.26896/1028-6861-2019-85-2-23-28

5. Morikawa T., Higashida K. Deformation microstructure and texture in a cold-rolled austenitic steel with low stacking-fault energy / Materials transactions. 2010. Vol. 51. N 4. P. 620 – 624. DOI: 10.2320/matertrans.MG200901

6. Morikawa T., Senba D., Higashida K., Onodera R. Micro shear bands in cold-rolled austenitic stainless steel / Materials Transactions, JIM. 1999. Vol. 40. N 9. P. 891 – 894. DOI: 10.2320/matertrans1989.40.891

7. Fujita H., Mori T. A formation mechanism of mechanical twins in FCC Metals / Scriptametallurgica. 1975. Vol. 9. N 6. P. 631 – 636. DOI: 10.1016/0036-9748(75)90476-7

8. Lee T.-H., Oh C., Kim S.-J., Takaki S. Deformation twinning in high-nitrogen austenitic stainless steel / Acta Mater. 2007. Vol. 55. N 11. P. 3649 – 3662. DOI: 10.1016/j.actamat.2007.02.023

9. Snezhnoy G. V., Olshanetsky V. E., Snezhnoy V. L. On the peculiarities of the formation and transformation of ε-martensite during plastic deformation of austenitic chromium-nickel steels / Nov. Mater. Tekhnol. Metalurg. Mashinobud. 2016. N 2. P. 43 – 49 [in Russian].

10. Olshanetsky V. E., Snezhnoy G. V. About the formation of two types of martensite phases in the course of plastic deformation of austenitic chromium-nickel steel / Fiz. Tekhn. Vysok. Davl. 2013. Vol. 23. N 2. P. 78 – 87 [in Russian].

11. Dobatkin S. V., Rybalchenko O. V., Enikeev N. A., et al. Formation of fully austenitic ultrafine-grained high strength state in metastable Cr-Ni-Ti stainless steel by severe plastic deformation / Mater. Lett. 2016. Vol. 166. P. 276 – 279. DOI: 10.1016/j.matlet.2015.12.094

12. Olshanetsky V. E., Snezhnoy G. V., Snezhnoy V. L. Features of the formation of martensitic phases in austenite during plastic deformation of chromium-nickel steels / Metalloved. Term. Obrab. Met. 2018. N 3. P. 32 – 39 [in Russian].

13. Shakhova I., Dudko V., Belyakov A., et al. Effect of large strain cold rolling and subsequent annealing on microstructure and mechanical properties of an austenitic stainless steel / Mater. Sci. Eng. A. 2012. Vol. 545. P. 176 – 186. DOI: 10.1016/j.msea.2012.02.101

14. Huang C., Yang G., Gao Y., et al. Investigation on the nucleation mechanism of deformation-induced martensite in an austenitic stainless steel under severe plastic deformation / J. Mater. Res. 2007. Vol. 22. N 3. P. 724 – 729. DOI: 10.1557/JMR.2007.0094

15. Krupp U., West C., Christ H. Deformation-induced martensite formation during cyclic deformation of metastable austenitic steel: Influence of temperature and carbon content / Mater. Sci. Eng. A. 2008. Vol. 481. P. 713 – 717.

16. Krupp U., Roth I. On the Mechanism of Martensite Formation during Short Fatigue Crack Propagation in Austenitic Stainless Steel: Experimental Identification and Modelling Concept / 13th International Conference on Fracture. — Beijing, China, 2013. DOI: 10.1016/j.msea.2006.12.211

17. Vereshchagin V. P., Gorelov E. N. Geometric substantiation of models of homogeneous deformation transformation of crystal lattices admitting an invariant plane. — Yekaterinburg: RGPPU, 2003. — 135 p. [in Russian].

18. Kovalenko V. S. Metallographic reagents: guide. — Moscow: Metallurgiya, 1981. — 120 p. [in Russian].

19. Beckert M., Klemm H. Methods of metallographic etching. — Moscow: Metallurgiya, 1988. — 400 p. [in Russian].

20. Panchenko E. V. Metallography Laboratory. — Moscow: Metallurgiya, 1965. — 441 p. [in Russian].

21. Fetisov G. P., Karpman M. G., et al. Materials science and technology of metals. — Moscow: Vysshaya shkola, 2002. — 638 p. [in Russian].


Review

For citations:


Chernigin M.A., Sorokina S.A., Vorobyev R.A. Study of the microstructure of metastable austenitic chromium manganese steel 14Kh15G9ND by optical and electron microscopy. Industrial laboratory. Diagnostics of materials. 2023;89(4):38-44. (In Russ.) https://doi.org/10.26896/1028-6861-2023-89-4-38-44

Views: 397


ISSN 1028-6861 (Print)
ISSN 2588-0187 (Online)